Gels self‐assembled from colloidal nanoparticles (NPs) translate the size‐dependent properties of nanostructures to materials with macroscale volumes. Large spanning networks of NP chains provide high interconnectivity within the material necessary for a wide range of properties from conductivity to viscoelasticity. However, a great challenge for nanoscale engineering of such gels lies in being able to accurately and quantitatively describe their complex non‐crystalline structure that combines order and disorder. The quantitative relationships between the mesoscale structural and material properties of nanostructured gels are currently unknown. Here, it is shown that lead telluride NPs spontaneously self‐assemble into a spanning network hydrogel. By applying graph theory (GT), a method for quantifying the complex structure of the NP gels is established using a topological descriptor of average nodal connectivity that is found to correlate with the gel's mechanical and charge transport properties. GT descriptions make possible the design of non‐crystalline porous materials from a variety of nanoscale components for photonics, catalysis, adsorption, and thermoelectrics.
Decorative chrome plating (DCP) continues to be ubiquitous in creating highly appealing metal finishings and coatings, beating out other organic dye-based finishes. However, the hazardous chrome plating process is fraught with adverse health effects for the workers involved and causes significant environmental damage. In this work, we present a multilayer thin film structure to mimic the chrome appearance. To find a design efficiently, we employ a reinforcement learning (RL) algorithm to perform an automatic inverse design. This results in structures composed of environmentally friendly materials that not only have the chrome color but can also achieve additional functions beyond decoration. As an example, one structure is designed to have high transmission in the radio frequency regime, a property that general metals cannot have, which can broaden the decorative chrome applications to include microwave operating devices. The experimental structures are fabricated by physical vapor deposition to demonstrate the indistinguishable chrome color and validate the effectiveness of the RL inverse design approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.