1-Acryloyl-2-cyanoindoles were found to be novel and efficient skeletons in visible-light-induced persulfate-promoted cascade cyclization reactions. With this transition-metal-free photocatalytic procedure, various sulfonated/thiocyanated pyrrolo[1,2a]indolediones were synthesized from 1-acryloyl-2-cyanoindoles with sulfonyl hydrazides/NH 4 SCN at room temperature under mild reaction conditions.
A visible-light-induced persulfate-promoted cascade phosphorylation/cyclization reaction to access various phosphorylated pyrrolo[1,2-a]indolediones under mild conditions was developed. Notably, the transformation was carried out with diethyl carbonate/H 2 O as a green medium at room temperature. More impressively, traditional metal catalysts and photocatalysts could be effectively avoided. The reactions are simple to operate, easy to scale up, and have good functional group tolerance.
In this study, selective degradations of the two enantiomers of indoxacarb in the concentrate (2.33S/1R) and racemate (1S/1R) are examined. The absolute configurations of indoxacarb enantiomers were determined using X-ray diffraction. The results showed that in two alkaline soils, the S-(+)-indoxacarb was preferentially degraded in both the concentrate and racemate. In one acid soil, the two enantiomers degraded no-selectivity. In another acid soil and one neutral soil, the R-(-)-indoxacarb was preferentially degraded in both the concentrate and racemate. Indoxacarb enantiomers were configurationally stable in the five soils, and no interconversion was observed during the incubation. Because no significant difference in degradation was observed after samples were sterilized, the observed enantioselectivity may be attributed primarily to microbial activity in soils. The results indicate that the selective degradation behavior was the same for both formulations that were tested.
The purpose of this study was to fabricate a low-cost and eco-friendly adsorbent using bamboo biochar (BB), a kind of charcoal composed of high Brunauer–Emmett–Teller surface area and variety of functional groups, and chitosan as substrates for remediation of Cd(II) in Cd(II) contaminated water and characterized the functional group characteristics, surface morphology, and Cd(II) adsorption effect using the Fourier transform infrared (FT-IR), scanning electron microscope (SEM), and energy-dispersive X-ray spectrometer (EDS). Results showed that chitosan-modified bamboo biochar (CBB) provided more active adsorption sites (such as –NH2, –COOH, –OH, and C=O) on the surface to enhance the Cd(II) removal efficiency in Cd(II) contaminated wastewater. Meanwhile, the optimal pH, contact time, and dose of CBB on the Cd(II) removal efficiency are 7, 120 min, and 600 mg, respectively. In addition, the adsorption isotherm results revealed that the possible adsorption mechanisms might include surface adsorption, electrostatic adsorption, and ion exchanges. Furthermore, the maximum adsorption capacity (Qm) values predicted from the Langmuir model were 37.74 and 93.46 mg/g for BB and CBB, respectively, also indicating a potential application of CBB in practical wastewater. Desorption and regeneration of CBB were attained simultaneously and the results showed that even after five cycles of adsorption-elution, the adsorption and desorption of CBB exhibited a slight decline and still reached at 71.70% and 65.92%. Results from this study would provide a reference to functionalized CBB for Cd(II) adsorption in contaminated water.
Bamboo is readily discolored by mold fungi, which greatly limits its applications. An effective antifungal agent, copper(II) chloride (CuCl 2 )-grafted silica gel, was prepared by a sol-gel process using tetraethoxysilane (TEOS)/3-aminopropyltriethoxysilane (APTES) mixtures. The elemental composition and the chemical combinations of homogeneous sol mixture (HSM) and bamboo were determined via Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM-EDS). The mold resistance of bamboo treated with HSM, alkaline copper quat (ACQ), chromated copper arsenate (CCA), and purified water was characterized by an indoor mold test. The micro-morphology of bamboo treated with HSM was investigated using scanning electron microscopy (SEM). HSM penetrated into the bamboo vessels, and formed xerogels, which was able to coordinate copper(II) cations. SEM-EDS investigations suggest that Si-O-Cu linkages may be formed through an exchange reaction between silanol groups and copper complexes. The bamboo samples treated with HSM showed highly efficient mold resistance due to a good penetration of HSM. Furthermore, no fungal hyphae were found in the structure of HSM-treated bamboo after a 5-week mold test. The copper complexes grafted to silica gel developed in this work provide an efficient antifungal agent for a wide range of potential applications in bamboo protection. which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.