This paper developed an electrochemical angular micro-accelerometer using a silicon-based three-electrode structure as a sensitive unit. Angular acceleration was translated to ion changes around sensitive microelectrodes, and the adoption of the silicon-based three-electrode structure increased the electrode area and the sensitivity of the device. Finite element simulation was conducted for geometry optimization where the anode length, the orifice diameter, and the orifice spacing of the sensitive unit were determined as 200 μm, 80 μm, and 500 μm, respectively. Microfabrication was conducted to manufacture the silicon-based three-electrode structure, which then was assembled to form the electrochemical angular micro-accelerometer, leveraging mechanical compression. Device characterization was conducted, where the sensitivity, bandwidth, and noise level were quantified as 290.193 V/(rad/s2) at 1 Hz, 0.01–2 Hz, and 1.78 × 10−8 (rad/s2)/Hz1/2 at 1 Hz, respectively. Due to the inclusion of the silicon-based three-electrode structure, compared with previously reported electrochemical angular accelerometers, the angular accelerometer developed in this article was featured with a higher sensitivity and a lower self-noise level. Therefore, it could be used for the measurement of low-frequency seismic rotation signals and played a role in the seismic design of building structures.
A new electrochemical angular microaccelerometer with integrated sensitive electrodes perpendicular to flow channels was developed in this paper. Based on a liquid inertial mass, an incoming angular acceleration was translated into varied concentrations of reactive ions around sensitive microelectrodes, generating a detection current. Key structural parameters of the sensitive microelectrodes were designed and compared based on theoretical analysis and numerical simulations. An angular microaccelerometer incorporating sensitive microelectrodes was then fabricated, assembled and characterized, producing a sensitivity of 338 V/(rad/s2), a −3 dB bandwidth of 0.01–10 Hz and a noise level of 4.67 × 10−8 (rad/s2)/Hz1/2 @ 1 Hz. These performances were better than their commercial counterparts based on traditional electrodes and previously reported microaccelerometers based on microsensitive electrodes in parallel with flow channels, which can be applied to measure rotational accelerations in earthquakes and buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.