This paper presents a resonant pressure microsensor with the measurement range of 1 MPa suitable for the soaring demands of industrial gas pressure calibration equipment. The proposed microsensor consists of an SOI layer as a sensing element and a glass cap for vacuum packaging. The sensing elements include a pressure-sensitive diaphragm and two resonators embedded in the diaphragm by anchor structures. The resonators are excited by a convenient Lorentz force and detected by electromagnetic induction, which can maintain high signal outputs. In operation, the pressure under measurement bends the pressure-sensitive diaphragm of the microsensor, producing frequency shifts of the two underlining resonators. The microsensor structures were designed and optimized using finite element analyses and a 4” SOI wafer was employed in fabrications, which requires only one photolithographic step. Experimental results indicate that the Q-factors of the resonators are higher than 25,000 with a differential temperature sensitivity of 0.22 Hz/°C, pressure sensitivities of 6.6 Hz/kPa, and −6.5 Hz/kPa, which match the simulation results of differential temperature sensitivity of 0.2 Hz/°C and pressure sensitivities of ±6.5 Hz/kPa. In addition, characterizations based on a closed-loop manner indicate that the presented sensor demonstrates low fitting errors within 0.01% FS, high accuracy of 0.01% FS in the pressure range of 20 kPa to 1 MPa and temperature range of −55 to 85 °C, and the long-term stability within 0.01% FS in a 156-day period under the room temperature.
This paper presents a resonant pressure microsensor relying on electrostatic excitation and piezoresistive detection where two double-ended tuning forks were used as resonators, enabling differential outputs. Pressure under measurement caused the deformation of the pressure sensitive membrane, leading to stress buildup of the resonator under electrostatic excitation with a corresponding shift of the resonant frequency detected piezoresistively. The proposed microsensor was fabricated by simplified SOI-MEMS technologies and characterized by both open-loop and closed-loop circuits, producing a quality factor higher than 10,000, a sensitivity of 79.44 Hz/kPa and an accuracy rate of over 0.01% F.S. In comparison to the previously reported resonant piezoresistive sensors, the proposed device used single-crystal silicon as piezoresistors, which was featured with low DC biased voltages, simple sensing structures and fabrication steps. In addition, the two double-ended tuning forks were used as resonators, producing high quality factors and differential outputs, which further improved the sensor performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.