Poly(lactic acid) (PLA) was first melt blended with five weight percentages (10-50 wt %) of poly(butylene adipate-coterephthalate) (PBAT) on a twin-screw extruder and then injection molded. The blend at 30 wt % PBAT exhibited the highest impact strength and elongation-at-break without phase inversion. The 70/30 (w/w) PLA/PBAT blend with high toughness improvement was selected for preparing both single and hybrid composites using an organic filler, wood fiber (WF) and inorganic filler, wollastonite (WT) with a fix total loading at 30 parts per hundred of resin (phr) throughout the experiment. Five WF/WT (phr/phr) ratios for the composites were 30/0, 10/20, 15/15, 20/10, and 0/30. The prepared composites were investigated for the mechanical and thermal properties, melt flow index (MFI), morphology, flammability, water uptake, and biodegradability as a function of composition. All the composites showed a filler-dose-dependent decrease in the impact strength, elongation-at-break, MFI, and thermal stability, but an increase in the tensile and flexural modulus, tensile and flexural strength, antidripping ability, and water uptake compared with the neat blend. The addition of WF and WT was also found to promote the biodegradability of the PLA/PBAT blend.
Cellulose, the most abundant biopolymer on Earth, has been widely attracted owing to availability, intoxicity, and biodegradability. Environmentally friendly hydrogels were successfully prepared from water hyacinth-extracted cellulose using a dissolution approach with sodium hydroxide and urea, and sodium tetraborate decahydrate (borax) was used to generate cross-linking between hydroxyl groups of cellulose chains. The incorporation of borax could provide the superabsorbent feature into the cellulose hydrogels. The uncross-linked cellulose hydrogels had a swelling ratio of 325%, while the swelling ratio of the cross-linked hydrogels could achieve ~ 900%. With increasing borax concentrations, gel fraction of the cross-linked hydrogels increased considerably. Borax also formed char on cellulose surfaces and generated water with direct contact with flame, resulting in flame ignition and propagation delay. Moreover, the cross-linked cellulose-based hydrogels showed antibacterial activity for gram-positive bacteria (S. aureus). The superabsorbent cross-linked cellulose-based hydrogels prepared in this work could possibly be used for wound dressing, agricultural, and flame retardant coating applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.