In this work, carbon dot-decorated graphite carbon nitride composites (CDs/g-C3N4) were synthesized and innovatively used as a SPME coating for the sensitive determination of chlorobenzenes (CBs) from water samples, coupled with gas chromatography–mass spectrometry. The CDs/g-C3N4 coating presented superior extraction performance in comparison to pristine g-C3N4, owing to the enhancement of active groups by CDs. The extraction capacities of as-prepared SPME coatings are higher than those of commercial coatings due to the functions of nitrogen-containing and oxygen-containing group binding, π–π stacking, and hydrophobic interactions. Under optimized conditions, the proposed method exhibits a wide linearity range (0.25–2500 ng L−1), extremely low detection of limits (0.002–0.086 ng L−1), and excellent precision, with relative standard deviations of 5.3–9.7% for a single fiber and 7.5–12.6% for five fibers. Finally, the proposed method was successfully applied for the analysis of CBs from real river water samples, with spiked recoveries ranging from 73.4 to 109.1%. This study developed a novel and efficient SPME coating material for extracting organic pollutants from environmental samples.
In this study, polyacrylic acid functionalized N-doped porous carbon derived from shaddock peels (PAA/N-SPCs) was fabricated and used as a solid-phase microextraction (SPME) coating for capturing and determining volatile halogenated hydrocarbons (VHCs) from water. Characterizations results demonstrated that the PAA/N-SPCs presented a highly meso/macro-porous hierarchical structure consisting of a carbon skeleton. The introduction of PAA promoted the formation of polar chemical groups on the carbon skeleton. Consequently, large specific surface area, highly hierarchical structures, and abundant chemical groups endowed the PAA/N-SPCs, which exhibited superior SPME capacities for VHCs in comparison to pristine N-SPCs and commercial SPME coatings. Under the optimum extraction conditions, the proposed analytical method presented wide linearity in the concentration range of 0.5–50 ng mL−1, excellent reproducibility with relative standard deviations of 5.8%–7.2%, and low limits of detection varying from 0.0005 to 0.0086 ng mL−1. Finally, the proposed method was applied to analyze VHCs from real water samples and observed satisfactory recoveries ranging from 75% to 116%. This study proposed a novel functionalized porous carbon skeleton as SPME coating for analyzing pollutants from environmental samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.