Electromyography (EMG) pattern recognition is one of the widely used methods to control the rehabilitation robots and prostheses. However, the changes in the distribution of EMG data due to electrodes shifting results in classification decline, which hinders its clinical application in repeated uses. Adaptive learning can solve this problem but takes additional time. To address this, an efficient scheme is developed by comparing the performance of 12 combinations of three feature selection methods [no feature selection (NFS), sequential forward search (SFS), and particle swarm optimization (PSO)] and four classification methods [non-adaptive support vector machine (N-SVM), incremental SVM (I-SVM), SVM based on TrAdaBoost (T-SVM), and I-SVM based on TrAdaBoost (TI-SVM)] in the classification of EMG data of 12 subjects for 5 consecutive days. Our results showed that TI-SVM achieved the highest classification accuracy among the classification methods (p < 0.05). The SFS method achieved the same classification accuracy as that of the scheme trained with the feature vectors selected by the NFS method (p = 0.999) while achieving a lower training time than that of TI-SVM combined with the NFS method (p = 0.043). Although the PSO method outperformed the NFS and SFS methods by achieving reduced training and response times (p < 0.05), the PSO method achieved a considerably lower classification accuracy than that of the scheme trained with the feature vectors selected by the NFS (p = 0.001) or SFS (p = 0.001) method. Furthermore, TI-SVM combined with the SFS method outperformed the CNN method with fine-tuning in classification accuracy on a small data set (p = 0.001). The results indicate that TI-SVM combined with the SFS method is suitable for improving the performance of EMG pattern recognition in repeated uses.
The natural polysaccharides extracted from the pollen of Pinus massoniana (TPPPS) have been shown to be a promising immune adjuvant against several viral chicken diseases. However, the exact mechanism through which TPPPS enhances the host immune response in chicken remains poorly understood. In the current study, chicken peripheral blood lymphocytes were treated with varying concentrations of TPPPS and pro-inflammatory cytokines such as IFN-γ, iIL-2 and IL-6 were measured to determine the optimal dose of the polysaccharide. A comparative analysis was subsequently performed between the proteome of lymphocytes subjected to the best treatment conditions and that of untreated cells. Protein identification and quantitation revealed a panel of three up-regulated and seven down-regulated candidates in TPPPS-treated chicken peripheral blood lymphocytes. Further annotation and functional analysis suggested that a number of those protein candidates were involved in the regulation of host innate immune response, inflammation and other immune-related pathways. We believe that our results could serve as a stepping stone for further research on the immune-enhancing properties of TPPPS and other polysaccharide-based immune adjuvants.
BackgroundIndocyanine green (ICG) imaging-guided lymphadenectomy has been introduced in gastric cancer (GC) surgery and its clinical value remains controversial. The aim of this study is to evaluate the efficacy of ICG fluorescence imaging-guided lymphadenectomy in radical gastrectomy for GC.MethodsStudies comparing lymphadenectomy in radical gastrectomy between use and non-use of ICG fluorescence imaging up to July 2022 were systematically searched from PubMed, Web of Science, Embase and Cochrane Library. A pooled analysis was performed for the available data regarding the baseline features, the number of retrieved lymph nodes (LNs), the number of metastatic LNs and surgical outcomes as well as oncological outcomes. RevMan 5.3 software was used to perform the statistical analysis. Quality evaluation and publication bias were also conducted.Results17 studies with a total of 2274 patients (1186 in the ICG group and 1088 in the control group) undergoing radical gastrectomy and lymphadenectomy were included. In the pooled analysis, the baseline features were basically comparable. However, the number of retrieved LNs in the ICG group was significantly more than that in the control group (MD = 7.41, 95% CI = 5.44 to 9.37, P < 0.00001). No significant difference was found between the ICG and control groups in terms of metastatic LNs (MD = -0.05, 95% CI = -0.25 to 0.16, P = 0.65). In addition, the use of ICG could reduce intraoperative blood loss (MD = -17.96, 95% CI = -27.89 to -8.04, P = 0.0004) without increasing operative time (P = 0.14) and overall complications (P = 0.10). In terms of oncological outcomes, the use of ICG could reduce the overall recurrence rate (OR = 0.50; 95% CI 0.28-0.89; P = 0.02) but could not increase the 2-year overall survival rate (OR = 1.25; 95% CI 0.72-2.18; P = 0.43).ConclusionsICG imaging-guided lymphadenectomy is valuable for complete LNs dissection in radical gastrectomy for GC. However, more high-quality randomized controlled trials are needed to confirm this benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.