The elastohydrodynamic lubrication (EHL) oil film between contact interfaces acts as a spring or damper to reduce wear and vibration for frictional pairs. To analyze the dynamic behaviors of friction pairs in mechanical systems both effectively and accurately, the stiffness and damping parameters under EHL contact states are essential. The presented work develops a numerical model to investigate the EHL stiffness and damping characteristics based on the transient EHL system and elastic contact theory of line contact, in which the stiffness force is separated according to the relationship with approach distance of the contact body established in the steady process, and then the damping can be obtained. The results show that the stiffness force plays an increasingly important role over the applied load conditions while the damping effects is gradually weakened. EHL stiffness is obviously smaller than dry contact stiffness, but the discrepancy is decreasing with the increasing load. Moreover, the higher entrainment velocity, lubricant viscosity and larger curvature radii leads to smaller stiffness and damping. The elastic modulus generates little effect on dynamic characteristics when the load is light while dominates the maximum level of the contact stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.