The arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression. During cold temperature stress, accumulation of the gene encoding the sole Asp–Glu–Ala–Asp (DEAD)-box RNA helicase in Synechocystis sp. PCC 6803, crhR (slr0083), increases 15-fold. Here, we show that crhR is expressed from a dicistronic operon with the methylthiotransferase rimO/miaB (slr0082) gene, followed by rapid processing of the operon transcript into two monocistronic mRNAs. This cleavage event is required for and results in destabilization of the rimO transcript. Results from secondary structure modeling and analysis of RNase E cleavage of the rimO–crhR transcript in vitro suggested that CrhR plays a role in enhancing the rate of the processing in an auto-regulatory manner. Moreover, two putative small RNAs are generated from additional processing, degradation, or both of the rimO transcript. These results suggest a role for the bacterial RNA helicase CrhR in RNase E-dependent mRNA processing in Synechocystis and expand the known range of organisms possessing small RNAs derived from processing of mRNA transcripts.
DEAD-box RNA-helicases catalyze the reorganization of structured RNAs and the formation of RNP complexes. The cyanobacterium Synechocystis sp. PCC 6803 encodes a single DEAD-box RNA helicase, CrhR (Slr0083), whose expression is regulated by abiotic stresses that alter the redox potential of the photosynthetic electron transport chain, including temperature downshift. Despite its proposed effect on RNA metabolism and its known relevance in cold-stress adaptation, the reported impact of a CrhR knockout on the cold adaption of the transcriptome only identified eight affected genes. Here, we utilized a custom designed microarray to assess the impact of the absence of CrhR RNA helicase activity on the transcriptome, independent of cold stress. CrhR truncation impacts an RNA subset comprising~10% of the ncRNA and alsõ 10% of the mRNA transcripts. While equal numbers of mRNAs showed increased as well as decreased abundance, more than 90% of the ncRNAs showed enhanced expression in the absence of CrhR, indicative of a negative effect on ncRNA transcription or stability. We further tested the effect of CrhR on the stability of strongly responding RNAs that identify examples of post-transcriptional and transcriptional regulation. The data suggest that CrhR impacts multiple aspects of RNA metabolism in Synechocystis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.