Network topology plays an important role in governing the collective dynamics. Partial synchronization (PaS) on regular networks with a few non-local links is explored. Different PaS patterns out of the symmetry breaking are observed for different ways of non-local couplings. The criterion for the emergence of PaS is studied. The emergence of PaS is related to the loss of degeneration in Lyapunov exponent spectrum. Theoretical and numerical analysis indicate that non-local coupling may drastically change the dynamical feature of the network, emphasizing the important topological dependence of collective dynamics on complex networks.
Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
-Synchronization of groups of coupled oscillators with sparse connections are explored. It is found that different topologies of intergroup couplings may lead to different synchronizability. In the strong-coupling limit, an analytical treatment and criterion is proposed to judge the synchronization between communities of oscillators, and an optimal connection scheme for the group synchronization is given. By varying the intergroup and intragroup coupling strengths, different synchronous phases, i.e., the unsynchronized state, intragroup synchronization, intergroup synchronization, and global synchronization are revealed. The present discussions and results can be applied to study the pattern formation and synchronization of coupled spatiotemporal systems.
In this paper, partial synchronization (PaS) in networks of coupled chaotic oscillator systems and synchronization in sparsely coupled spatiotemporal systems are explored. For the PaS, we reveal that the existence of PaS patterns depends on the symmetry property of the network topology, while the emergence of the PaS pattern depends crucially on the stability of the corresponding solution. An analytical criterion in judging the stability of PaS state on a given network are proposed in terms of a comparison between the Lyapunov exponent spectrum of the PaS manifold and that of the transversal manifold. The competition and selections of the PaS patterns induced by the presence of multiple topological symmetries of the network are studied in terms of the criterion. The phase diagram in distinguishing the synchronous and the asynchronous states is given. The criterion in judging PaS is further applied to the study of synchronization of two sparsely coupled spatiotemporal chaotic systems. Different synchronization regimes are distinguished. The present study reveals the intrinsic collective bifurcation of coupled dynamical systems prior to the emergence of global synchronization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.