Hyperuricemia is well known as the cause of gout. In recent years, it has also been recognized as a risk factor for arteriosclerosis, cerebrovascular and cardiovascular diseases, and nephropathy in diabetic patients. Foods high in purine compounds are more potent in exacerbating hyperuricemia. Therefore, the development of probiotics that efficiently degrade purine compounds is a promising potential therapy for the prevention of hyperuricemia. In this study, fifty-five lactic acid bacteria isolated from Chinese sauerkraut were evaluated for the ability to degrade inosine and guanosine, the two key intermediates in purine metabolism. After a preliminary screening based on HPLC, three candidate strains with the highest nucleoside degrading rates were selected for further characterization. The tested biological characteristics of candidate strains included acid tolerance, bile tolerance, anti-pathogenic bacteria activity, cell adhesion ability, resistance to antibiotics and the ability to produce hydrogen peroxide. Among the selected strains, DM9218 showed the best probiotic potential compared with other strains despite its poor bile resistance. Analysis of 16S rRNA sequences showed that DM9218 has the highest similarity (99%) to Lactobacillus plantarum WCFS1. The acclimated strain DM9218-A showed better resistance to 0.3% bile salt, and its survival in gastrointestinal tract of rats was proven by PCR-DGGE. Furthermore, the effects of DM9218-A in a hyperuricemia rat model were evaluated. The level of serum uric acid in hyperuricemic rat can be efficiently reduced by the intragastric administration of DM9218-A (P<0.05). The preventive treatment of DM9218-A caused a greater reduction in serum uric acid concentration in hyperuricemic rats than the later treatment (P<0.05). Our results suggest that DM9218-A may be a promising candidate as an adjunctive treatment in patients with hyperuricemia during the onset period of disease. DM9218-A also has potential as a probiotic in the prevention of hyperuricemia in the normal population.
To investigate the effects of orally administrated Saccharomyces boulardii (S. boulardii) on the progress of carbon tetrachloride (CCl4)-induced liver fibrosis, 34 male Wistar rats were randomly divided into four experimental groups including the control group (n = 8), the cirrhotic group (n = 10), the preventive group (n = 8), and the treatment group (n = 8). Results showed that the liver expression levels of collagen, type I, alpha 1 (Col1A1), alpha smooth muscle actin (αSMA), transforming growth factor beta (TGF-β) and the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) increased significantly in cirrhotic rats compared with control and decreased by S. boulardii administration. Treatment of S. boulardii also attenuated the increased endotoxin levels and pro-inflammatory cytokines in CCl4-treated rats. And, these were associated with the changes of intestinal permeability and fecal microbial composition. Our study suggested that oral administration of S. boulardii can promote the liver function of CCl4-treated rats, and the preventive treatment of this probiotic yeast may decelerate the progress of liver fibrosis.
Objectives/Hypothesis Eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP and NECRSwNP) show distinguished clinical pathology, but their underlying mechanism remains unclear. We aimed to investigate the clinical, hematological, and histopathological changes in chronic rhinosinusitis with nasal polyps (CRSwNP) endotypes and its association with microbiota. Study Design A comparative cross‐sectional study. Methods A comparative study of 46 patients with CRSwNP (34.69 ± 16.39 years old) who underwent endoscopic sinus surgery were recruited and subdivided into ECRSwNP and NECRSwNP groups based on eosinophilic tissue inflammation; 12 healthy controls were also included. A structured histopathological analysis was conducted, and complete blood count was determined in patients. Endoscopic‐guided middle meatus swabs and fecal samples were collected from the patients and controls and subsequently subjected to 16S rRNA gene sequencing on Illumina MiSeq. Results Compared to NECRSwNP, ECRSwNP showed a statistically significant increase in the computed tomography score, endoscopic score, blood eosinophil percentage, tissue eosinophil count, inflammation degree, subepithelial edema, and eosinophil aggregation. Airway microbiota communities differed among the three groups. The abundance of Moraxella and Parvimonas was significantly higher in the ECRSwNP group. Distinct microbiota dysbiosis in CRSwNP endotypes was found to be correlated with different clinical pathologies. Moreover, the gut microbiota in ECRSwNP and NECRSwNP showed dysbiosis, that is, significant decrease in the abundance of Actinobacteria in the former and significant increase in the abundance of Enterobacterales and several genera in NECRSwNP. Conclusions Significant clinical pathology and microbiota changes were evident in patients with ECRSwNP and NECRSwNP. Distinct microbiota dysbiosis was correlated with different clinical pathologies. Understanding these differences may improve the prognosis and treatment of chronic rhinosinusitis. Level of Evidence 4 Laryngoscope, 131:E34–E44, 2021
Mounting evidence suggests that probiotics can be used to treat allergic asthma by modulating the gut microbiota, and that the effects of probiotics may be influenced by environmental factors such as diet. We conducted a rat model with allergic asthma (AA) modulated by Lactobacillus paracasei, feeding up with high-fat or high-fiber diets based on collecting data from 85 questionnaires. The systemic proinflammatory cytokines were detected by ELISA and the overall structure of fecal microbiota was analyzed via 16S rRNA gene sequencing. The results showed consumption of a high-fiber diet alleviated the allergic symptoms and airway inflammation, and led to improving the imbalance of T-helper type 1 (Th1)/Th2 cells with increased expression of interferon-γ and decreased expression of interleukin-4. Whereas, the high-fat diet had deteriorating implications and skewed the inflammatory perturbation. Furthermore, abundances of phylum Bacteroidetes, families Muribaculaceae, Tannerellaceae, Prevotellaceae, Enterococcaceae, genera Allobaculum, Parabacteroides, and Enterococcus were enriched in L. paracasei-modulating rats fed with high-fiber diet. Firmicutes and Proteobacteria, families Lachnospiraceae, Ruminococcaceae and Desulfovibrionaceae, genera Blautia, unidentified_Ruminococcaceae, unidentified_Clostridiales and Oscillibacter were in relatively high abundance in the rats administered high-fat diet. Association between changed microbiota and inflammatory cytokines was also conferred. These data indicated that the efficacy of L. paracasei in allergic asthma was influenced by different dietary patterns. Hence, diet is important for probiotic therapy when managing allergic asthma.
Kidney diseases are common and the incidence rate is increasing. Gut microbiota is involved in metabolic and immune regulation of the host. Genetic, alimentary and environmental disease factors may change gut flora and increase opportunistic and pathogenic bacteria, contributing to immune or non-immune mediated kidney diseases including IgA nephropathy and diabetic nephropathy. Additionally, bacterial metabolites may be a source of uremic toxins. Thus, identification of diversity, composition, and metabolic and immunologic features of gut bacteria in chronic kidney diseases may help understand pathogenetic mechanism and develop therapy for diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.