BackgroundRecent studies have suggested that bacteria associated with the placenta—a “placental microbiome”—may be important in reproductive health and disease. However, a challenge in working with specimens with low bacterial biomass, such as placental samples, is that some or all of the bacterial DNA may derive from contamination in dust or commercial reagents. To investigate this, we compared placental samples from healthy deliveries to a matched set of contamination controls, as well as to oral and vaginal samples from the same women.ResultsWe quantified total 16S rRNA gene copies using quantitative PCR and found that placental samples and negative controls contained low and indistinguishable copy numbers. Oral and vaginal swab samples, in contrast, showed higher copy numbers. We carried out 16S rRNA gene sequencing and community analysis and found no separation between communities from placental samples and contamination controls, though oral and vaginal samples showed characteristic, distinctive composition. Two different DNA purification methods were compared with similar conclusions, though the composition of the contamination background differed. Authentically present microbiota should yield mostly similar results regardless of the purification method used—this was seen for oral samples, but no placental bacterial lineages were (1) shared between extraction methods, (2) present at >1 % of the total, and (3) present at greater abundance in placental samples than contamination controls.ConclusionsWe conclude that for this sample set, using the methods described, we could not distinguish between placental samples and contamination introduced during DNA purification.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-016-0172-3) contains supplementary material, which is available to authorized users.
Expression of a polysaccharide capsule is required for the full pathogenicity of many mucosal pathogens such as Streptococcus pneumoniae. Although capsule allows for evasion of opsonization and subsequent phagocytosis during invasive infection, its role during mucosal colonization, the organism's commensal state, remains unknown. Using a mouse model, we demonstrate that unencapsulated mutants remain capable of nasal colonization but at a reduced density and duration compared to those of their encapsulated parent strains. This deficit in colonization was not due to increased susceptibility to opsonophagocytic clearance involving complement, antibody, or the influx of Ly-6G-positive cells, including neutrophils seen during carriage. Rather, unencapsulated mutants remain agglutinated within lumenal mucus and, thus, are less likely to transit to the epithelial surface where stable colonization occurs. Studies of in vitro binding to immobilized human airway mucus confirmed the inhibitory effect of encapsulation. Likewise, pneumococcal variants expressing larger amounts of negatively charged capsule per cell were less likely to adhere to surfaces coated with human mucus and more likely to evade initial clearance in vivo. Removal of negatively charged sialic acid residues by pretreatment of mucus with neuraminidase diminished the antiadhesive effect of encapsulation. This suggests that the inhibitory effect of encapsulation on mucus binding may be mediated by electrostatic repulsion and offers an explanation for the predominance of anionic polysaccharides among the diverse array of unique capsule types. In conclusion, our findings demonstrate that capsule confers an advantage to mucosal pathogens distinct from its role in inhibition of opsonophagocytosis-escape from entrapment in lumenal mucus.
Summary Much of the mortality attributed to influenza virus is due to secondary bacterial pneumonia, particularly from Streptococcus pneumoniae. However, mechanisms underlying this co-infection are incompletely understood. We find that prior influenza infection enhances pneumococcal colonization of the murine nasopharynx, which in-turn promotes bacterial spread to the lungs. Influenza accelerates bacterial replication in vivo, and sialic acid, a major component of airway glycoconjugates, is identified as the host-derived metabolite that stimulates pneumococcal proliferation. Influenza infection increases sialic acid and sialylated mucin availability, and enhances desialylation of host glycoconjugates. Pneumococcal genes for sialic acid catabolism are required for influenza to promote bacterial growth. Decreasing sialic acid availability in vivo by genetic deletion of the major airway mucin Muc5ac or mucolytic treatment limits influenza-induced pneumococcal replication. Our findings suggest that higher rates of disease during co-infection could stem from influenza-provided sialic acid, which increases pneumococcal proliferation, colonization and aspiration.
Nine hemophilia A dogs were treated with adeno-associated viral (AAV) gene therapy and followed for up to 10 years. Administration of AAV8 or AAV9 vectors expressing canine factor VIII (AAV-cFVIII) corrected the FVIII deficiency to 1.9%−11.3% of normal FVIII levels. In two of nine dogs, FVIII activity increased gradually starting about four years after treatment. None of the dogs showed evidence of tumors or altered liver function. Analysis of integration sites in liver samples from six treated dogs identified 1,741 unique AAV integration events in genomic DNA and expanded cell clones in five dogs, with 44% of these integrations near genes involved in cell growth. All recovered integrated vectors were partially deleted and/or rearranged. Our data suggest that the increase in FVIII protein expression in two dogs may have been due to clonal expansion of cells harboring integrated vectors. These results support the clinical development of liver-directed AAV gene therapy for hemophilia A while emphasizing the importance of long-term monitoring for potential genotoxicity.
The introduction of the conjugate seven-valent pneumococcal vaccine has led to the replacement of vaccine serotypes with nonvaccine serotypes of Streptococcus pneumoniae. This observation implies that intraspecies competition between pneumococci occurs during nasopharyngeal colonization, allowing one strain or set of strains to predominate over others. We investigated the contribution of the blp locus, encoding putative bacteriocins and cognate immunity peptides, to intraspecies competition. We sequenced the relevant regions of the blp locus of a type 6A strain able to inhibit the growth of the type 4 strain, TIGR4, in vitro. Using deletional analysis, we confirmed that inhibitory activity is regulated by the function of the response regulator, BlpR, and requires the two putative bacteriocin genes blpM and blpN. Comparison of the TIGR4 BlpM and -N amino acid sequences demonstrated that only five amino acid differences were sufficient to target the heterologous strain. Analysis of a number of clinical isolates suggested that the BlpMN bacteriocins divide into two families. A mutant in the blpMN operon created in the clinically relevant type 19A background was deficient in both bacteriocin activity and immunity. This strain was unable to compete with both its parent strain and a serotype 4 isolate during cocolonization in the mouse nasopharynx, suggesting that the locus is functional in vivo and confirming its role in promoting intraspecies competition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.