Expression of a polysaccharide capsule is required for the full pathogenicity of many mucosal pathogens such as Streptococcus pneumoniae. Although capsule allows for evasion of opsonization and subsequent phagocytosis during invasive infection, its role during mucosal colonization, the organism's commensal state, remains unknown. Using a mouse model, we demonstrate that unencapsulated mutants remain capable of nasal colonization but at a reduced density and duration compared to those of their encapsulated parent strains. This deficit in colonization was not due to increased susceptibility to opsonophagocytic clearance involving complement, antibody, or the influx of Ly-6G-positive cells, including neutrophils seen during carriage. Rather, unencapsulated mutants remain agglutinated within lumenal mucus and, thus, are less likely to transit to the epithelial surface where stable colonization occurs. Studies of in vitro binding to immobilized human airway mucus confirmed the inhibitory effect of encapsulation. Likewise, pneumococcal variants expressing larger amounts of negatively charged capsule per cell were less likely to adhere to surfaces coated with human mucus and more likely to evade initial clearance in vivo. Removal of negatively charged sialic acid residues by pretreatment of mucus with neuraminidase diminished the antiadhesive effect of encapsulation. This suggests that the inhibitory effect of encapsulation on mucus binding may be mediated by electrostatic repulsion and offers an explanation for the predominance of anionic polysaccharides among the diverse array of unique capsule types. In conclusion, our findings demonstrate that capsule confers an advantage to mucosal pathogens distinct from its role in inhibition of opsonophagocytosis-escape from entrapment in lumenal mucus.
SummaryMost clinical isolates of Streptococcus pneumoniae consist of heterogeneous populations of at least two colony phenotypes, opaque and transparent, selected for in the bloodstream and nasopharynx, respectively. Microarray analysis revealed 24 orfs that demonstrated differences in expression greater than twofold between variants of independent strains. Twenty-one of these showed increased expression in the transparent variants, including 11 predicted to be involved in sugar metabolism. A single genomic region contains seven of these loci including the gene that encodes the neuraminidase, NanA. In contrast to previous studies, there was no contribution of NanA to adherence of S. pneumoniae to epithelial cells or colonization in an animal model. However, we observed NanA-dependent desialylation of human airway components that bind to the organism and may mediate bacterial clearance. Targets of desialylation included human lactoferrin, secretory component, and IgA2 that were shown to be present on the surface of the pneumococcus in vivo during pneumococcal pneumonia. The efficiency of desialylation was increased in the transparent variants and enhanced for host proteins binding to the surface of S. pneumoniae .Because deglycosylation affects the function of many host proteins, NanA may contribute to a proteaseindependent mechanism to modify bound targets and facilitate enhanced survival of the bacterium.
C-reactive protein (CRP) is a normal constituent of human sera synthesized by hepatocytes and induced by proinflammatory cytokines. The function of this acute-phase reactant includes activation of complement and enhancement of opsonophagocytosis. CRP binds to phosphorylcholine (ChoP), a constituent of eukaryotic membranes that is also found on the cell surface of major bacterial pathogens of the human respiratory tract, including Streptococcus pneumoniae and Haemophilus influenzae. The presence of CRP on mucosal surfaces and role in innate immunity in the human respiratory tract where ChoP-containing organisms reside have not been previously studied. We have shown using a monoclonal antibody to CRP that CRP is present in inflamed (0.17 to 42 g/ml) and uninflamed (<0.05 to 0.88 g/ml) secretions from the human respiratory tract in sufficient quantities for an antimicrobial effect. In addition, the CRP gene was expressed in epithelial cells of the human respiratory tract using in situ hybridization on nasal polyps and reverse transcriptase PCR of pharyngeal cells in culture. The complement-dependent bactericidal activity of normal nasal airway surface fluid and sputum against ChoP-expressing H. influenzae was abolished when the secretions were pretreated to remove CRP. In summary, the results indicate that CRP is present in secretions of the human respiratory tract, that human respiratory epithelial cells are capable of CRP expression, and that this protein may contribute to bacterial clearance in the human respiratory tract.
A number of pathogens of the upper respiratory tract express an unusual prokaryotic structure, phosphorylcholine (ChoP), on their cell surface. We tested the hypothesis that ChoP, also found on host membrane lipids in the form of phosphatidylcholine, acts so as to decrease killing by antimicrobial peptides that target differences between bacterial and host membranes. In Haemophilus influenzae, ChoP is a phase-variable structure on the oligosaccharide portion of the lipopolysaccharide (LPS). There was a bactericidal effect of the peptide LL-37/hCAP18 on a nontypeable H. influenzae strain, with an increasing selection for the ChoP ؉ phase as the concentration of the peptide was raised from 0 to 10 g/ml. Moreover, constitutive ChoP-expressing mutants of unrelated strains showed up to 1,000-fold-greater survival compared to mutants without ChoP. The effect of ChoP on resistance to killing by LL-37/hCAP18 was dependent on the salt concentration and was observed only when bacteria were grown in the presence of environmental choline, a requirement for the expression of ChoP on the LPS. Further studies established that there is transcription of the LL-37/hCAP18 gene on the epithelial surface of the human nasopharynx in situ and inducible transcription in epithelial cells derived from the upper airway. The presence of highly variable amounts of LL-37/hCAP18 in normal nasal secretions (<1.2 to >80 g/ml) was demonstrated with an antibody against this peptide. It was concluded that ChoP alters the bacterial cell surface so as mimic host membrane lipids and decrease killing by LL-37/hCAP18, an antimicrobial peptide that may be expressed on the mucosal surface of the nasopharynx in bactericidal concentrations.
Numerous major bacterial pathogens in the human respiratory tract, including Streptococcus pneumoniae and Haemophilus influenzae, express cell-surface phosphorylcholine (ChoP), a ligand for the receptor for platelet-activating factor (rPAF). ChoP is also bound by C-reactive protein (CRP), which, in the presence of complement, may be bactericidal. This study found that CRP can block the attachment of bacteria expressing cell-surface ChoP to host cells. Concentrations of CRP equivalent to those on the mucosal surface of the human airway blocked most adherence of both S. pneumoniae and H. influenzae to human pharyngeal epithelial cells. ChoP-mediated adherence was also reduced in the presence of an rPAF antagonist. The antiadhesive effects of the rPAF antagonist and CRP were not additive, suggesting that CRP activity is specific to the area of adherence mediated by the receptor. The binding of CRP to ChoP and the effect of CRP on adherence were inhibited by human surfactant (primarily ChoP). The antiadhesive effect of CRP may be diminished in the terminal airway, where surfactant is abundant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.