ObjectivesThe relevance of spatial composition in the microbial changes associated with UC is unclear. We coupled luminal brush samples, mucosal biopsies and laser capture microdissection with deep sequencing of the gut microbiota to develop an integrated spatial assessment of the microbial community in controls and UC.DesignA total of 98 samples were sequenced to a mean depth of 31 642 reads from nine individuals, four control volunteers undergoing routine colonoscopy and five patients undergoing surgical colectomy for medically-refractory UC. Samples were retrieved at four colorectal locations, incorporating the luminal microbiota, mucus gel layer and whole mucosal biopsies.ResultsInterpersonal variability accounted for approximately half of the total variance. Surprisingly, within individuals, asymmetric Eigenvector map analysis demonstrated differentiation between the luminal and mucus gel microbiota, in both controls and UC, with no differentiation between colorectal regions. At a taxonomic level, differentiation was evident between both cohorts, as well as between the luminal and mucosal compartments, with a small group of taxa uniquely discriminating the luminal and mucosal microbiota in colitis. There was no correlation between regional inflammation and a breakdown in this spatial differentiation or bacterial diversity.ConclusionsOur study demonstrates a conserved spatial structure to the colonic microbiota, differentiating the luminal and mucosal communities, within the context of marked interpersonal variability. While elements of this structure overlap between UC and control volunteers, there are differences between the two groups, both in terms of the overall taxonomic composition and how spatial structure is ascribable to distinct taxa.
Neoadjuvant chemoradiation therapy (CRT) is increasingly the standard of care for locally advanced oesophageal cancer. A complete pathological response to CRT is associated with a favourable outcome. Radiation therapy is important for local tumour control, however, radioresistance remains a substantial clinical problem. We hypothesise that alterations in mitochondrial function and energy metabolism are involved in the radioresistance of oesophageal adenocarcinoma (OAC). To investigate this, we used an established isogenic cell line model of radioresistant OAC. Radioresistant cells (OE33 R) demonstrated significantly increased levels of random mitochondrial mutations, which were coupled with alterations in mitochondrial function, size, morphology and gene expression, supporting a role for mitochondrial dysfunction in the radioresistance of this model. OE33 R cells also demonstrated altered bioenergetics, demonstrating significantly increased intracellular ATP levels, which was attributed to enhanced mitochondrial respiration. Radioresistant cells also demonstrated metabolic plasticity, efficiently switching between the glycolysis and oxidative phosphorylation energy metabolism pathways, which were accompanied by enhanced clonogenic survival. This data was supported in vivo, in pre-treatment OAC tumour tissue. Tumour ATP5B expression, a marker of oxidative phosphorylation, was significantly increased in patients who subsequently had a poor pathological response to neoadjuvant CRT. This suggests for the first time, a role for specific mitochondrial alterations and metabolic remodelling in the radioresistance of OAC.
Wnt pathway deregulation is a common characteristic of many cancers. Only colorectal cancer predominantly harbours mutations in APC, whereas other cancer types (hepatocellular carcinoma, solid pseudopapillary tumours of the pancreas) have activating mutations in β-catenin (CTNNB1). We have compared the dynamics and the potency of β-catenin mutations in vivo. Within the murine small intestine (SI), an activating mutation of β-catenin took much longer to achieve Wnt deregulation and acquire a crypt-progenitor cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single activating mutation of β-catenin was unable to drive Wnt deregulation or induce the CPC phenotype. This ability of β-catenin mutation to differentially transform the SI versus the colon correlated with higher expression of E-cadherin and a higher number of E-cadherin:β-catenin complexes at the membrane. Reduction in E-cadherin synergised with an activating mutation of β-catenin resulting in a rapid CPC phenotype within the SI and colon. Thus, there is a threshold of β-catenin that is required to drive transformation, and E-cadherin can act as a buffer to sequester mutated β-catenin.
Pathologic assessment of colorectal cancer specimens plays an essential role in patient management, informing prognosis and contributing to therapeutic decision making. The tumor-node-metastasis (TNM) staging system is a key component of the colorectal cancer pathology report and provides important prognostic information. However there is significant variation in outcome of patients within the same tumor stage. Many other histological features such as tumor budding, vascular invasion, perineural invasion, tumor grade and rectal tumor regression grade that may be of prognostic value are not part of TNM staging. Assessment of extramural tumor deposits and peritoneal involvement contributes to TNM staging but there are some difficulties with the definition of both of these features. Controversies in colorectal cancer pathology reporting include the subjective nature of some of the elements assessed, poor reporting rates and reproducibility and the need for standardized examination protocols and reporting. Molecular pathology is becoming increasingly important in prognostication and prediction of response to targeted therapies but accurate morphology still has a key role to play in colorectal cancer pathology reporting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.