During chronic injury, regeneration of the adult liver becomes impaired. In this context bipotent Hepatic Progenitor Cells (HPCs) become activated and can regenerate both cholangiocytes and hepatocytes. Notch and Wnt signalling during hepatic ontogeny are described, but their roles in HPC mediated liver regeneration are unclear. Here we show in human diseased liver and murine models of the ductular reaction with biliary and hepatocyte regeneration that Notch and Wnt signalling direct HPC specification within the activated myofibroblasts and macrophages HPC niche. During biliary regeneration, Numb is downregulated in HPCs, Jagged1 promotes biliary specification within HPCs. During hepatocyte regeneration, macrophage derived canonical Wnt signalling maintains Numb within HPCs, and Notch signalling is reduced promoting hepatocyte specification. This dominant Wnt state is stimulated through engulfment of hepatocyte debris by niche macrophages and can directly influence the HPCs. Macrophage Wnt3a expression in turn facilitates hepatocyte regeneration – thus exemplifying a novel positive feedback mechanism in adult parenchymal regeneration.
Two types of stem cells are currently defined in small intestinal crypts: cycling crypt base columnar (CBC) cells and quiescent ‘+4’ cells. Here, we combine transcriptomics with proteomics to define a definitive molecular signature for Lgr5+ CBC cells. Transcriptional profiling of FACS‐sorted Lgr5+ stem cells and their daughters using two microarray platforms revealed an mRNA stem cell signature of 384 unique genes. Quantitative mass spectrometry on the same cell populations identified 278 proteins enriched in intestinal stem cells. The mRNA and protein data sets showed a high level of correlation and a combined signature of 510 stem cell‐enriched genes was defined. Spatial expression patterns were further characterized by mRNA in‐situ hybridization, revealing that approximately half of the genes were expressed in a gradient with highest levels at the crypt bottom, while the other half was expressed uniquely in Lgr5+stem cells. Lineage tracing using a newly established knock‐in mouse for one of the signature genes, Smoc2, confirmed its stem cell specificity. Using this resource, we find—and confirm by independent approaches—that the proposed quiescent/‘+4’ stem cell markers Bmi1, Tert, Hopx and Lrig1 are robustly expressed in CBC cells.
Inactivation of APC is a strongly predisposing event in the development of colorectal cancer1,2, prompting us to search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth3-5 and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP16,7. This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP18, would be ineffective in limiting cancer progression in APC deficient lesions. Here we show that mTORC1 activity is absolutely required for the proliferation of APC deficient (but not wild type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC deficient cells show the expected increases in protein synthesis, our studies reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1 mediated inhibition of eEF2 kinase is required for the proliferation of APC deficient cells. Importantly, treatment of established APC deficient adenomas with rapamycin (which can target eEF2 through the mTORC1 – S6K – eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together our data suggest that inhibition of translation elongation using existing, clinically approved drugs such as the Rapalogs, would provide clear therapeutic benefit for patients at high-risk of developing colorectal cancer.
Although deregulation of the Wnt signalling pathway has been implicated in urothelial cell carcinoma (UCC), the functional significance is unknown. To test its importance, we have targeted expression of an activated form of β-catenin to the urothelium of transgenic mice using Cre-Lox technology (UroIICRE+ β-cateninexon3/+). Expression of this activated form of β-catenin led to the formation of localised hyperproliferative lesions by 3 months, which did not progress to malignancy. These lesions were characterised by a marked increase of the PTEN tumour suppressor protein. This appears to be a direct consequence of activating Wnt signalling in the bladder as conditional deletion of the Apc (Adenomatous Polyposis coli) gene within the adult bladder led rapidly to coincident β-catenin and PTEN expression. This PTEN expression blocked proliferation. Next, we combined PTEN deficiency with β-catenin activation and found this caused papillary UCC. These tumours had increased pAKT signalling and were dependent on mTOR. Importantly in human UCC, there was a significant correlation between high levels of β-catenin and pAKT (and low levels of PTEN). Taken together these data definitively show that deregulated Wnt signalling plays a critical role in driving UCC, and suggests that human UCC which have high levels of Wnt and PI3 kinase signalling may be responsive to mTOR inhibition.
It is clear from epidemiological studies that excess iron is associated with increased risk of colorectal cancer; however, questions regarding the mechanism of how iron increases cancer risk, the source of the excess iron (circulating or luminal), and whether iron reduction represents a potential therapeutic option remain unanswered. In this study, we show that after Apc deletion, the cellular iron acquisition proteins TfR1 and DMT1 are rapidly induced. Conversely, restoration of APC reduces cellular iron due to repression of these proteins. To test the functional importance of these findings, we performed in vivo investigations of the impact of iron levels on intestinal tumorigenesis. Strikingly, depletion of luminal (but not systemic) iron strongly suppressed murine intestinal tumorigenesis, whereas increased luminal iron strongly promoted tumorigenesis. Taken together, our data definitively delineate iron as a potent modifier of intestinal tumorigenesis and have important implications for dietary iron supplementation in patients at high risk of colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.