This study deciphers a potentially critical interplay of DEPDC1-EEF1A1-FOXO3a axis during the osteosarcoma progression. Bioinformatics analysis of documented 25,035 genes for differentially expressed genes were accompanied by transcriptional and translational examinations of clinical osteosarcoma specimens and osteosarcoma cell lines to assess the roles and interactions of DEPDC1, EEF1A1, and FOXO3a in the tumor cells proliferation and prognosis. Gene expression profile analysis and clinical tests revealed highly expressed DEPDC1 in human osteosarcoma cells and tumor tissues. Vector-mediated silence of DEPDC1 resulted in halted osteosarcoma cell proliferation, promoted apoptosis, and ceased tumor metastasis. Immunoprecipitation assay confirmed that EEF1A1 directly bind to DEPDC1 protein through three binding regions. Further, DEPDC1/EEF1A1 complex significantly decreased the expression of FOXO3a at transcription and translation levels, which subsequently promoted the proliferation of osteosarcoma cells and tumor metastasis. Correlation studies exhibited that overexpression of DEPDC1/EEF1A1 complex in the clinical specimens negatively correlated with the patient survival rate. In conclusion, DEPDC1-EEF1A1-FOXO3a axis plays as a critical pathway that regulates the progression and prognosis of osteosarcoma.
As a universal pathogen leading to neonatal defects and transplant failure, Human cytomegalovirus (HCMV) has strict species specificity that the inability to using this virus in animals has hampered its pathogenesis study. However, the mechanism of cross-species barrier remains elusive that no non-human cell model has been established to fill this knowledge gap. We observed that primary dermis fibroblasts (TSDF) isolated from the Chinese tree shrew (Tupaia belangeri chinensis), a small laboratory animal with close affinity to primates, were permissive to HCMV replication. In TSDF infected with GFP-expressing HCMV, the green fluorescence and cytopathic effect were observed and the expression of 3 kinetic genes and replication of viral genome were detected. The cell-free viruses produced in TSDF reached 10 3 pfu/mL at 96 hpi, which were 10-fold lower than in primary human foreskin fibroblasts. Our results demonstrated that TSDF supported low level of lytic replication of HCMV. The TSDF model provides a useful platform for the mechanism study of species barrier of HCMV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.