Conspectus With the increasing diversification of portable electronics and large-scale energy storage systems, conventional lithium-ion batteries (LIBs) with graphite anodes are now approaching their theoretical limits. Lithium metal, as the “Holy Grail” electrode for next-generation rechargeable batteries, is being revisited to meet the booming demand for high energy density electrodes due to its ultrahigh theoretical specific capacity and negative redox potential. Nevertheless, typical issues like notorious dendrite growth still hamper the bulk application of Li metal anodes. Dendrite growth renders increased surface area of the lithium metal, causing persistent depletion of the electrolyte and active materials, facilitating catastrophic failure of the battery, and even inducing fatal safety hazards. The consequences become more serious during operation at high current densities and over long cycling life. Therefore, it is urgent to suppress and even eliminate dendrite formation during the Li plating/stripping process. This Account highlights several innovative strategies for dendrite suppression, dendrite regulation, and dendrite elimination from the perspective of interface energy and bulk stresses. First, we review the fundamental mechanism of dendrite formation and growth in Li metal anodes. We show that the dendrite morphology could be substantially ameliorated, in theory, by homogenizing the electric field distribution, lowering the Li ion concentration gradient, and facilitating mechanical blocking. Next, we address the problem of dendrite suppression by applying two-dimensional (2D) materials to Li metal systems and preventing dendrite penetration through stress release and mechanical blocking. Graphene with a high specific area and vermiculite sheets (VSs) with a large physical rigidity were demonstrated to be efficacious in reinforcing Li anodes and polymer electrolytes separately. However, Li dendrite growth is a continuous process and remains inevitable with increasing current density and cycling life. Instead of suppressing dendrite growth, we focus on how to regulate homogeneous Li dendrite formation and growth. Dendrite regulation means to allow dendrite growth but take steps to transform it into Li with a smooth morphology. We introduce two main strategies to regulate Li growth: (i) guiding Li nucleation and (ii) controlling the Li growth pathways and directions. These processes greatly rely on the interface energy between the substrate and Li atoms. Elimination of the dendrites, which is the most formidable challenge for dendrite control, can also be achieved by dynamically engineering the force, such as deflecting the electric field by Lorentz force in a magnetic field, enhancing the integrated yield stress by the design of bulk nanostructured materials, and reducing the lateral Li diffusion barrier by a biomimetic co-deposition process. Solutions to the challenges of dendrite control in Li metal anodes can provide safe next-generation rechargeable lithium metal batteries that have a long cycl...
Na-based batteries are proposed as promising energy storage candidates for beyond Li-ion technology due to the higher natural earth of Na metal. For its high capacity and low potential, Na metal may carve itself a niche when directly used as anodes. Similar to or even more problematic than Li, however, uneven plating/stripping of Na leads to dendrite formation. As the plating substrates, current collectors have a paramount influence on the Na plating/stripping behaviors. Here we propose porous Al current collectors as the plating substrate to suppress Na dendrites. Al does not alloy with Na. It is advantageous over Cu current collectors in terms of cost and weight. The interconnected porous structure can increase available surface for Na to nucleate and decrease the Na flux distribution, leading to homogeneous plating. The Na metal anodes can run for over 1000 cycles on porous Al with a low and stable voltage hysteresis and their average plating/stripping Coulombic efficiency was above 99.9%, which is greatly improved compared to planar Al. We used the porous Al for Na-O, Na-NaV(PO) cells with low Na amount and anode free Na-TiS batteries and anticipate that using this strategy can be combined with further electrolyte and cathodes to develop high performance Na-based batteries.
With its high theoretical capacity and low electrochemical potential, Li metal itself would be the ideal anode for Li-ion batteries. However, practical use of Li anode has been hindered by its tendency for filament or dendritic growth. Here we report a highly effective scaffold based on crumpled paper ball-like graphene particles. We found that these crumpled graphene balls are suitable for constructing highperformance Li metal anodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.