Na-based batteries are proposed as promising energy storage candidates for beyond Li-ion technology due to the higher natural earth of Na metal. For its high capacity and low potential, Na metal may carve itself a niche when directly used as anodes. Similar to or even more problematic than Li, however, uneven plating/stripping of Na leads to dendrite formation. As the plating substrates, current collectors have a paramount influence on the Na plating/stripping behaviors. Here we propose porous Al current collectors as the plating substrate to suppress Na dendrites. Al does not alloy with Na. It is advantageous over Cu current collectors in terms of cost and weight. The interconnected porous structure can increase available surface for Na to nucleate and decrease the Na flux distribution, leading to homogeneous plating. The Na metal anodes can run for over 1000 cycles on porous Al with a low and stable voltage hysteresis and their average plating/stripping Coulombic efficiency was above 99.9%, which is greatly improved compared to planar Al. We used the porous Al for Na-O, Na-NaV(PO) cells with low Na amount and anode free Na-TiS batteries and anticipate that using this strategy can be combined with further electrolyte and cathodes to develop high performance Na-based batteries.
With its high theoretical capacity and low electrochemical potential, Li metal itself would be the ideal anode for Li-ion batteries. However, practical use of Li anode has been hindered by its tendency for filament or dendritic growth. Here we report a highly effective scaffold based on crumpled paper ball-like graphene particles. We found that these crumpled graphene balls are suitable for constructing highperformance Li metal anodes.
Sodium-ion batteries are similar in concept and function to lithium-ion batteries, but their development and commercialization lag far behind. One obstacle is the lack of a standard reference electrode. Unlike Li foil reference electrodes, sodium is not easily processable or moldable and it deforms easily. Herein we fabricate a processable and moldable composite Na metal anode made from Na and reduced graphene oxide (r-GO). With only 4.5 % percent r-GO, the composite anodes had improved hardness, strength, and stability to corrosion compared to Na metal, and can be engineered to various shapes and sizes. The plating/stripping cycling of the composite anode was significantly extended in both ether and carbonate electrolytes giving less dendrite formation. We used the composite anode in both Na-O and Na-Na V (PO ) full cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.