The knowledge of transient flow in pressure pipelines is very important for the designing and describing of pressure networks. The water hammer is the most common example of transient flow in pressure pipelines. During this phenomenon, the transformation of kinetic energy into pressure energy causes significant changes in pressure, which can lead to serious problems in the management of pressure networks. The phenomenon is very complex, and a large number of different factors influence its course. In the case of a water hammer caused by valve closing, the characteristic of gate closure is one of the most important factors. However, this factor is rarely investigated. In this paper, the results of physical experiments with water hammer in steel and PE pipelines are described and analyzed. For each water hammer, characteristics of pressure change and valve closing were recorded. The measurements were compared with the results of calculations perfomed by common methods used by engineers - Michaud’s equation and Wood and Jones’s method. The comparison revealed very significant differences between the results of calculations and the results of experiments. In addition, it was shown that, the characteristic of butterfly valve closure has a significant influence on water hammer, which should be taken into account in analyzing this phenomenon. Comparison of the results of experiments with the results of calculations? may lead to new, improved calculation methods and to new methods to describe transient flow.
Several comparative studies in this work were carried out with the help of the method of characteristics. This numerical method is the most effective for solving a system of partial equations (hyperbolic type) describing a complex problem associated with the water hammer phenomenon. The numerical tests have been performed for the selected constant value of the introduced dimensionless water hammer number. The presented comparisons showed that the unsteady flows without column separation are analogous in various hydraulic systems when the value of this number has been preserved. Besides, cavitating flows with such a constant value of this number were also tested. These studies indicated the existence of another dimensionless number which was called a cavitation number. Maintaining the fixed values of both dimensionless numbers guaranteed similarity of flows in different examined systems in which cavitation occurred.
This paper concerns the start-up process of a hydrostatic transmission with a fixed displacement pump, with particular emphasis on dynamic surplus pressure. A numerically controlled transmission using a proportional directional valve was analysed by simulation and experimental verification. The transmission is controlled by the throttle method, and the variable resistance is the throttling gap of the proportional spool valve. A mathematical description of the gear start-up process was obtained using a lumped-parameters model based on ordinary differential equations. The proportional spool valve was described using a modified model, which significantly improved the performance of the model in the closed-loop control process. After assuming the initial conditions and parameterization of the equation coefficients, a simulation of the transition start-up was performed in the MATLAB–Simulink environment. Simulations and experimental studies were carried out for control signals of various shapes and for various feedback from the hydraulic system. The pressure at the pump discharge port and the inlet port of the hydraulic motor, as well as the rotational speed of the hydraulic motor, were analysed in detail as functions of time. In the experimental verification, complete measuring lines for pressure, speed of the hydraulic motor, flow rate, and temperature of the working liquid were used.
It is well known that the water hammer phenomenon can lead to pipeline system failures. For this reason, there is an increased need for simulation of hydraulic transients. High-density polyethylene (HDPE) pipes are commonly used in various pressurised pipeline systems. Most studies have only focused on water hammer events in a single pipe. However, typical fluid distribution networks are composed of serially connected pipes with various inner diameters. The present paper aims to investigate the influence of sudden cross-section changes in an HDPE pipeline system on pressure oscillations during the water hammer phenomenon. Numerical and experimental studies have been conducted. In order to include the viscoelastic behaviour of the HDPE pipe wall, the generalised Kelvin–Voigt model was introduced into the continuity equation. Transient equations were numerically solved using the explicit MacCormack method. A numerical model that involves assigning two values of flow velocity to the connection node was used. The aim of the conducted experiments was to record pressure changes downstream of the pipeline system during valve-induced water hammer. In order to validate the numerical model, the simulation results were compared with experimental data. A satisfactory compliance between the results of the numerical calculations and laboratory data was obtained.
Most of today’s water supply systems are based on plastic pipes. They are characterized by the retarded strain (RS) that takes place in the walls of these pipes. The occurrence of RS increases energy losses and leads to a different form of the basic equations describing the transient pipe flow. In this paper, the RS is calculated with the use of convolution integral of the local derivative of pressure and creep function that describes the viscoelastic behavior of the pipe-wall material. The main equations of a discrete bubble cavity model (DBCM) are based on a momentum equation of two-phase vaporous cavitating flow and continuity equations written initially separately for the gas and liquid phase. In transient flows, another important source of pressure damping is skin friction. Accordingly, the wall shear stress model also required necessary modifications. The final partial derivative set of equations was solved with the use of the method of characteristics (MOC), which transforms the original set of partial differential equations (PDE) into a set of ordinary differential equations (ODE). The developed numerical solutions along with the appropriate boundary conditions formed a basis to write a computer program that was used in comparison analysis. The comparisons between computed and measured results showed that the novel modified DBCM predicts pressure and velocity waveforms including cavitation and retarded strain effects with an acceptable accuracy. It was noticed that the influence of unsteady friction on damping of pressure waves was much smaller than the influence of retarded strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.