A promising method for obtaining ceramic components with additive manufacturing (AM) is to use a two-step process of first printing the artifact in polymer and then converting it to ceramic using pyrolysis to form polymer derived ceramics (PDCs). AM of ceramic components using PDCs has been demonstrated with a number of high-cost techniques, but data is lacking for fused filament fabrication (FFF)-based 3-D printing. This study investigates the potential to use the lower-cost, more widespread and accessible FFF-based 3-D printing of PDCs. Low-cost FFF machines have a resolution limit set by the nozzle width, which is inferior to the resolutions obtained with expensive SLA or SLS AM systems. To match the performance a partial PDC conversion is used here, where only the outer surface of the printed polymer frame is converted to ceramic. Here the FFF-based 3-D printed sample is coated with a preceramic polymer and then it is converted into the corresponding PDC sample with a high temperature pyrolysis process. A screening experiment is performed on commercial filaments to obtain ceramic 3-D prints by surface coating both hard thermoplastics: poly lactic acid (PLA), polycarbonate (PC), nylon alloys, polypropylene (PP), polyethylene terephthalate glycol (PETG), polyethylene terephthalate (PET), and co-polyesters; and flexible materials including: flexible PLA, thermoplastic elastomer and thermoplastic polyurethane filaments. Mass and volume changes were quantified for the soaking and pyrolysis steps to form a hollow ceramic skin. All 3-D printing materials extruded at 250 microns successfully produced ceramics skins of less than 100 microns. Details on the advantages and disadvantages of the different 3-D printing polymer precursors are discussed for this processing regime. The results are analyzed and discussed in order to provide guidance for more widespread application of AM of PDCs. Graphical Abstract Highlights• Additive manufacturing of polymer derived ceramics with fused filament fabrication • Producing ceramics with hollow struts by surface coating with preceramic polymers • Creating a multi-level porous system with stable geometry • All 3-D printing materials produced ceramics skins of less than 100 microns
Great advances have been made in various 3D printing methods for ceramics. Fabrication of Si‐based ceramics using polymer‐derived ceramics (PDCs) is gaining popularity. Using this route, preceramic polymers can be shaped in the polymer state and then pyrolyzed to produce different types of ceramics. Cellular ceramics can be manufactured using this technique. Herein, the novel fabrication of cellular ceramics with a two‐step process using PDCs is reported. First cellular structures are 3D printed with fused filament fabrication (FFF) using thermoplastic polyurethane and impregnated with preceramic polymer polysilazane. Second, pyrolysis of the impregnated structure produces a self‐similar ceramic cellular structure. The impact of 1) catalysts, 2) curing environment, and 3) pyrolysis sequence optimization to form cellular ceramics with fully dense SiOC(N) struts are systemically evaluated. The resultant custom ceramic components can tolerate operating temperatures of 1500 °C and can be manufactured for less than 5% of the cost of competing methods. The ceramic material is shown to be biocompatible and promotes fast cell adhesion. Finally, early‐stage cell activation on the SiOC(N) structure is shown to be tunable by adjusting the porosity with this 3D printing to mimic the bone tissue geometry for bone regeneration.
Bone tissue engineering has developed significantly in recent years as there has been increasing demand for bone substitutes due to trauma, cancer, arthritis, and infections. The scaffolds for bone regeneration need to be mechanically stable and have a 3D architecture with interconnected pores. With the advances in additive manufacturing technology, these requirements can be fulfilled by 3D printing scaffolds with controlled geometry and porosity using a low-cost multistep process. The scaffolds, however, must also be bioactive to promote the environment for the cells to regenerate into bone tissue. To determine if a low-cost 3D printing method for bespoke SiOC(N) porous structures can regenerate bone, these structures were tested for osteointegration potential by using human mesenchymal stem cells (hMSCs). This includes checking the general biocompatibilities under the osteogenic differentiation environment (cell proliferation and metabolism). Moreover, cell morphology was observed by confocal microscopy, and gene expressions on typical osteogenic markers at different stages for bone formation were determined by real-time PCR. The results of the study showed the pore size of the scaffolds had a significant impact on differentiation. A certain range of pore size could stimulate osteogenic differentiation, thus promoting bone regrowth and regeneration.
Bone tissue engineering has developed significantly in recent years as the increasing demand for bone substitutes due to trauma, cancer, arthritis, and infections. The scaffolds for bone regeneration need to be mechanically stable and have a 3D architecture with interconnected pores. With the advances in additive manufacturing technology, these requirements can be fulfilled by 3D printing scaffolds with controlled geometry and porosity using a low-cost multistep process. The scaffolds, however, must also be bioactive to promote the environment for the cells to regenerate into bone tissue. To determine if a low-cost 3D printing method for bespoke SiOC(N) porous structures can regenerate bone these structures were tested for osteointegration potential by using human mesenchymal stem cells (hMSCs). This includes checking the general biocompatibilities under the osteogenic differentiation environment (cell proliferation and metabolism). Moreover, cell morphology was observed by confocal microscopy and gene expressions on typical osteogenic markers at different stages for bone formation were determined by real-time PCR. The results of the study showed the pore size of the scaffolds had a significant impact on differentiation. A certain range of pore size could stimulate osteogenic differentiation, thus promoting bone regrowth and regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.