Preceramic polymers were proposed over 30 years ago as precursors for the fabrication of mainly Si-based advanced ceramics, generally denoted as polymer-derived ceramics (PDCs). The polymer to ceramic transformation process enabled significant technological breakthroughs in ceramic science and technology, such as the development of ceramic fibers, coatings, or ceramics stable at ultrahigh temperatures (up to 20001C) with respect to decomposition, crystallization, phase separation, and creep. In recent years, several important advances have been achieved such as the discovery of a variety of functional properties associated with PDCs. Moreover, novel insights into their structure at the nanoscale level have contributed to the fundamental understanding of the various useful and unique features of PDCs related to their high chemical durability or high creep resistance or semiconducting behavior. From the processing point of view, preceramic polymers have been used as reactive binders to produce technical ceramics, they have been manipulated to allow for the formation of ordered pores in the meso-range, they have been tested for joining advanced ceramic components, and have been processed into bulk or macroporous components. Consequently, possible fields of applications of PDCs have been extended significantly by the recent research and development activities. Several key engineering fields suitable for application of PDCs include high-temperature-resistant materials (energy materials, automotive, aerospace, etc.), hard materials, chemical engineering (catalyst support, food- and biotechnology, etc.), or functional materials in electrical engineering as well as in micro/ nanoelectronics. The science and technological development of PDCs are highly interdisciplinary, at the forefront of micro- and nanoscience and technology, with expertise provided by chemists, physicists, mineralogists, and materials scientists, and engineers. Moreover, several specialized industries have already commercialized components based on PDCs, and the production and availability of the precursors used has dramatically increased over the past few years. In this feature article, we highlight the following scientific issues related to advanced PDCs research: (1) General synthesis procedures to produce silicon-based preceramic polymers. (2) Special microstructural features of PDCs. (3) Unusual materials properties of PDCs, that are related to their unique nanosized microstructure that makes preceramic polymers of great and topical interest to researchers across a wide spectrum of disciplines. (4) Processing strategies to fabricate ceramic components from preceramic polymers. (5) Discussion and presentation of several examples of possible real-life applications that take advantage of the special characteristics of preceramic polymers. Note: In the past, a wide range of specialized international symposia have been devoted to PDCs, in particular organized by the American Ceramic Society, the European Materials Society, and the Materials Research S...
To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1–10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk.
To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
SUMMARY Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an exome-wide rare variant burden analysis of 363 index cases with familial ALS (FALS). The results revealed an excess of patient variants within TUBA4A, the gene encoding the Tubulin, Alpha 4A protein. Analysis of a further 272 FALS cases and 5,510 internal controls confirmed the overrepresentation as statistically significant and replicable. Functional analyses revealed that TUBA4A mutants destabilize the microtubule network, diminishing its repolymerization capability. These results further emphasize the role of cytoskeletal defects in ALS and demonstrate the power of gene-based rare variant analyses in situations where causal genes cannot be identified through traditional segregation analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.