Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years1-9, nearly 50% of FALS cases have unknown genetic etiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is critical for monomeric (G)-actin conversion to filamentous (F)-actin. Exome sequencing of two large ALS families revealed different mutations within the PFN1 gene. Additional sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F-/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.
Transactive response DNA‐binding protein 43 (TDP‐43) forms abnormal ubiquitinated and phosphorylated inclusions in brain tissues from patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. TDP‐43 is a DNA/RNA‐binding protein involved in RNA processing, such as transcription, pre‐mRNA splicing, mRNA stabilization and transport to dendrites. We found that in response to oxidative stress and to environmental insults of different types TDP‐43 is capable to assemble into stress granules (SGs), ribonucleoprotein complexes where protein synthesis is temporarily arrested. We demonstrated that a specific aminoacidic interval (216–315) in the C‐terminal region and the RNA‐recognition motif 1 domain are both implicated in TDP‐43 participation in SGs as their deletion prevented the recruitment of TDP‐43 into SGs. Our data show that TDP‐43 is a specific component of SGs and not of processing bodies, although we proved that TDP‐43 is not necessary for SG formation, and its gene silencing does not impair cell survival during stress. The analysis of spinal cord tissue from ALS patients showed that SG markers are not entrapped in TDP‐43 pathological inclusions. Although SGs were not evident in ALS brains, we speculate that an altered control of mRNA translation in stressful conditions may trigger motor neuron degeneration at early stages of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.