Transactive response DNA‐binding protein 43 (TDP‐43) forms abnormal ubiquitinated and phosphorylated inclusions in brain tissues from patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. TDP‐43 is a DNA/RNA‐binding protein involved in RNA processing, such as transcription, pre‐mRNA splicing, mRNA stabilization and transport to dendrites. We found that in response to oxidative stress and to environmental insults of different types TDP‐43 is capable to assemble into stress granules (SGs), ribonucleoprotein complexes where protein synthesis is temporarily arrested. We demonstrated that a specific aminoacidic interval (216–315) in the C‐terminal region and the RNA‐recognition motif 1 domain are both implicated in TDP‐43 participation in SGs as their deletion prevented the recruitment of TDP‐43 into SGs. Our data show that TDP‐43 is a specific component of SGs and not of processing bodies, although we proved that TDP‐43 is not necessary for SG formation, and its gene silencing does not impair cell survival during stress. The analysis of spinal cord tissue from ALS patients showed that SG markers are not entrapped in TDP‐43 pathological inclusions. Although SGs were not evident in ALS brains, we speculate that an altered control of mRNA translation in stressful conditions may trigger motor neuron degeneration at early stages of the disease.
To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
SUMMARY Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an exome-wide rare variant burden analysis of 363 index cases with familial ALS (FALS). The results revealed an excess of patient variants within TUBA4A, the gene encoding the Tubulin, Alpha 4A protein. Analysis of a further 272 FALS cases and 5,510 internal controls confirmed the overrepresentation as statistically significant and replicable. Functional analyses revealed that TUBA4A mutants destabilize the microtubule network, diminishing its repolymerization capability. These results further emphasize the role of cytoskeletal defects in ALS and demonstrate the power of gene-based rare variant analyses in situations where causal genes cannot be identified through traditional segregation analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.