Mycobacteria are unusual in encoding two GroEL paralogs, GroEL1 and GroEL2. GroEL2 is essential--presumably providing the housekeeping chaperone functions--while groEL1 is nonessential, contains the attB site for phage Bxb1 integration, and encodes a putative chaperone with unusual structural features. Inactivation of the Mycobacterium smegmatis groEL1 gene by phage Bxb1 integration allows normal planktonic growth but prevents the formation of mature biofilms. GroEL1 modulates synthesis of mycolates--long-chain fatty acid components of the mycobacterial cell wall--specifically during biofilm formation and physically associates with KasA, a key component of the type II Fatty Acid Synthase involved in mycolic acid synthesis. Biofilm formation is associated with elevated synthesis of short-chain (C56-C68) fatty acids, and strains with altered mycolate profiles--including an InhA mutant resistant to the antituberculosis drug isoniazid and a strain overexpressing KasA--are defective in biofilm formation.
Mycobacterium tuberculosis, the causative agent of tuberculosis, has two distinguishing characteristics: its ability to stain acid-fast and its ability to cause long-term latent infections in humans. Although this distinctive staining characteristic has often been attributed to its lipid-rich cell wall, the specific dye-retaining components were not known. Here we report that targeted deletion of kasB, one of two M. tuberculosis genes encoding distinct -ketoacyl-acyl carrier protein synthases involved in mycolic acid synthesis, results in loss of acid-fast staining. Biochemical and structural analyses revealed that the ⌬kasB mutant strain synthesized mycolates with shorter chain lengths. An additional and unexpected outcome of kasB deletion was the loss of ketomycolic acid trans-cyclopropanation and a drastic reduction in methoxymycolic acid trans-cyclopropanation, activities usually associated with the trans-cyclopropane synthase CmaA2. Although deletion of kasB also markedly altered the colony morphology and abolished classic serpentine growth (cording), the most profound effect of kasB deletion was the ability of the mutant strain to persist in infected immunocompetent mice for up to 600 days without causing disease or mortality. This long-term persistence of ⌬kasB represents a model for studying latent M. tuberculosis infections and suggests that this attenuated strain may represent a valuable vaccine candidate against tuberculosis. mycolic acid ͉ Ziehl-Neelsen stain ͉ cording ͉ persistence ͉ FAS-II
SummaryMycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.