The present work attempts to enhance the sensitivity of a folded beam microelectromechanical systems (MEMS) capacitive accelerometer by optimising the device geometry. The accelerometer is intended to serve as a microphone in the fully implantable hearing application which can be surgically implanted in the middle ear bone structure. For the efficient design of the accelerometer as a fully implantable biomedical device, the design parameters such as size, weight and resonant frequency have been considered. The geometrical parameters are varied to obtain the optimum sensitivity considering the design constraints and the stability of the structure. The optimised design is simulated and verified using COMSOL MULTIPHYSICS 4.2. The stability of the device is ensured using eigenfrequency analysis. Optimised results of the device geometry are presented and discussed. The accelerometer has a sensing area of 1 mm2 and attains a nominal capacitance of 5.3 pF and an optimum sensitivity of 6.89 fF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.