Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Urinary tract infections (UTIs) are the most common bacterial infection in pregnancy, increasing the risk of maternal and neonatal morbidity and mortality. Urinary tract infections may present as asymptomatic bacteriuria, acute cystitis or pyelonephritis. Escherichia coli is the most common pathogen associated with both symptomatic and asymptomatic bacteriuria. If asymptomatic bacteriuria is untreated, up to 30% of mothers develop acute pyelonephritis, with an increased risk of multiple maternal and neonatal complications, such as preeclampsia, preterm birth, intrauterine growth restriction and low birth weight. Urinary tract infection is a common, but preventable cause of pregnancy complications, thus urinary tests, such as urine culture or new technologies such as high-throughput DNA sequence-based analyses, should be used in order to improve antenatal screening of pregnant women.
Preterm delivery (PTD) represents a major health problem that occurs in 1 in 10 births. The hypothesis of the present study was that the metabolic profile of different biological fluids, obtained from pregnant women during the second trimester of gestation, could allow useful correlations with pregnancy outcome. Holistic and targeted metabolomics approaches were applied for the complementary assessment of the metabolic content of prospectively collected amniotic fluid (AF) and paired maternal blood serum samples from 35 women who delivered preterm (between 29 weeks + 0 days and 36 weeks +5 days gestation) and 35 women delivered at term. The results revealed trends relating the metabolic content of the analyzed samples with preterm delivery. Untargeted and targeted profiling showed differentiations in certain key metabolites in the biological fluids of the two study groups. In AF, intermediate metabolites involved in energy metabolism (pyruvic acid, glutamic acid, and glutamine) were found to contribute to the classification of the two groups. In maternal serum, increased levels of lipids and alterations of key end-point metabolites were observed in cases of preterm delivery. Overall, the metabolic content of second-trimester AF and maternal blood serum shows potential for the identification of biomarkers related to fetal growth and preterm delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.