Although individual neurons in the arm area of the primate motor cortex are only broadly tuned to a particular direction in three-dimensional space, the animal can very precisely control the movement of its arm. The direction of movement was found to be uniquely predicted by the action of a population of motor cortical neurons. When individual cells were represented as vectors that make weighted contributions along the axis of their preferred direction (according to changes in their activity during the movement under consideration) the resulting vector sum of all cell vectors (population vector) was in a direction congruent with the direction of movement. This population vector can be monitored during various tasks, and similar measures in other neuronal populations could be of heuristic value where there is a neural representation of variables with vectorial attributes.
Experiments were made on the posterior parietal association cortical areas 5 and in 17 hemispheres of 11 monkeys, 6 M. mulatta and 5 M. arctoides. The electrical signs of the activity of single cortical cells were recorded with microelectrodes in waking animals as they carried out certain behavioral acts in response to a series of sensory cues. The behavioral paradigms were one for detection alone, and a second for detection plus projection of the arm to contact a stationary or moving target placed at arm's length. Of the 125 microelectrode penetrations made, 1,451 neurons were identified in terms of the correlation of their activity with the behavioral acts and their sensitivity or lack of it to sensory stimuli delivered passively; 180 were studied quantitatively. The locations of cortical neurons were identified in serial sections; 94 penetrations and 1,058 neurons were located with certainty. About two-thirds of the neurons of area 5 were activated by passive rotation of the limbs at their joints; of these, 82% were related to single, contralateral joints, 10% to two or more contralateral joints, 6% to ipsilateral, and 2% to joints on both sides of the body. A few of the latter were active during complex bodily postures. A large proportion of area 5 neurons were relatively insensitive to passive joint rotations, as compared with similar neurons of the postcentral gyrus, but were driven to high rates of discharge when the same joint was rotated during an active movement of the animal...
A hemispheric asymmetry in the functional activation of the human motor cortex during contralateral (C) and ipsilateral (I) finger movements, especially in right-handed subjects, was documented with nuclear magnetic resonance imaging at high field strength (4 tesla). Whereas the right motor cortex was activated mostly during contralateral finger movements in both right-handed (C/I mean area of activation = 36.8) and left-handed (C/I = 29.9) subjects, the left motor cortex was activated substantially during ipsilateral movements in left-handed subjects (C/I = 5.4) and even more so in right-handed subjects (C/I = 1.3).
A rhesus monkey was trained to move its arm in a direction that was perpendicular to and counterclockwise from the direction of a target light that changed in position from trial to trial. Solution of this problem was hypothesized to involve the creation and mental rotation of an imagined movement vector from the direction of the light to the direction of the movement. This hypothesis was tested directly by recording the activity of cells in the motor cortex during performance of the task and computing the neuronal population vector in successive time intervals during the reaction time. The population vector rotated gradually counterclockwise from the direction of the light to the direction of the movement at an average rate of 732 degrees per second. These results provide direct, neural evidence for the mental rotation hypothesis and indicate that the neuronal population vector is a useful tool for "reading out" and identifying cognitive operations of neuronal ensembles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.