GC has received grants, research support or is coinvestigator in clinical trials by Bristol-Myers-Squibb, Celgene, Boehringer Ingelheim, Roche, Tigen Pharma, Iovance and Kite. GC has received honoraria for consultations or presentations by Roche, Genentech, BMS, AstraZeneca, Sanofi-Aventis, Nextcure and GeneosTx. GC has patents in the domain of antibodies and vaccines targeting the tumor vasculature as well as technologies related to T-cell expansion and engineering for T-cell therapy. GC receives royalties from the University of Pennsylvania. FH reports grants from Prostate Cancer Foundation, Bristol-Myers-Squibb, Accuray Inc, Bioprotect, and non-financial support from Roche ImFlame cooperative group, European Organization for Research and Treatment of Cancer (EORTC) chairman Gynecology Cancer Group. FH has received honoraria for consultations from
BackgroundMost ovarian cancer patients are diagnosed at a late stage with 85% of them relapsing after surgery and standard chemotherapy; for this reason, new treatments are urgently needed. Ovarian cancer has become a candidate for immunotherapy by reason of their expression of shared tumor-associated antigens (TAAs) and private mutated neoantigens (NeoAgs) and the recognition of the tumor by the immune system. Additionally, the presence of intraepithelial tumor infiltrating lymphocytes (TILs) is associated with improved progression-free and overall survival of patients with ovarian cancer. The aim of active immunotherapy, including vaccination, is to generate a new anti-tumor response and amplify an existing immune response. Recently developed NeoAgs-based cancer vaccines have the advantage of being more tumor specific, reducing the potential for immunological tolerance, and inducing robust immunogenicity.MethodsWe propose a randomized phase I/II study in patients with advanced ovarian cancer to compare the immunogenicity and to assess safety and feasibility of two personalized DC vaccines. After standard of care surgery and chemotherapy, patients will receive either a novel vaccine consisting of autologous DCs pulsed with up to ten peptides (PEP-DC), selected using an agnostic, yet personalized, epitope discovery algorithm, or a sequential combination of a DC vaccine loaded with autologous oxidized tumor lysate (OC-DC) prior to an equivalent PEP-DC vaccine. All vaccines will be administered in combination with low-dose cyclophosphamide. This study is the first attempt to compare the two approaches and to use NeoAgs-based vaccines in ovarian cancer in the adjuvant setting.DiscussionThe proposed treatment takes advantage of the beneficial effects of pre-treatment with OC-DC prior to PEP-DC vaccination, prompting immune response induction against a wide range of patient-specific antigens, and amplification of pre-existing NeoAgs-specific T cell clones.Trial registration This trial is already approved by Swissmedic (Ref.: 2019TpP1004) and will be registered at http://www.clinicaltrials.gov before enrollment opens.
Background: Dendritic cells (DCs) are the most efficient antigen-presenting cells, hence initiating a potent and cancer-specific immune response. This ability (mainly using monocyte-derived DCs) has been exploited in vaccination strategies for decades with limited clinical efficacy. Another alternative would be the use of conventional DCs (cDCs) of which at least three subsets circulate in human blood: cDC1s (CD141 bright ), cDC2s (CD1c þ ) and plasmacytoid DCs. Despite their paucity, technical advances may allow for their selection and clinical use. However, many assumptions concerning the DC subset biology depend on
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.