Therapy against cancer remains a daunting issue for human health, despite remarkable innovations in many areas of pathology. In situ biosynthesized nanoclusters bestow a novel remedy for carcinogenic cell imaging. Exosomes have received special attention as an efficient tool for the diagnosis of various diseases, including cancers. All types of cells (healthy or diseased) generate exosomes, making them significantly unique for relevant disease diagnosis and treatment. In this contribution, we exploit the possibility of utilizing the exosomes to facilitate chemotherapeutics, viz. the combination of doxorubicin (Dox) and biosynthesized silver nanoclusters in cancer cells. Our study showed a new facile way for bioimaging of cancer cells using biosynthesized silver-DNA nanoclusters, and thus further targeting cancer cells using the relevant cancer exosomes as drug delivery cargo. After isolating exosomes from neoplastic cells, i.e. HeLa, loaded with the drug, and treating other neoplastic cells with cargo-loaded isolated exosomes, we found that cargo-loaded isolated exosomes can readily enter into the targeted cancer cells and efficiently kill these neoplastic cells. This raises the possibility of acting as a novel facile modality for target cancer theranostics with high efficiency and biocompability.
Background Glioblastoma multiforme (GBM) is one of the most daunting issues to modern therapeutics, with a higher mortality rate post-diagnosis. Temozolomide (TMZ) is the only available treatment; however, the frequent resistance leaves the oncologists at a dead end. Therefore, new approaches to circumvent the GBM are highly desired. We have employed TiO2 nanosticks loaded with TMZ as nanomedicine for TMZ-resistant GBM resection in this contribution. Results The ultrasonication triple-action effect could greatly facilitate tumor ablation by enhancing the TiO2 nanosticks traversing across BBB, releasing the TMZ payload from TiO2 nanosticks and reactive oxygen species (ROS) generation from TiO2 nanosticks within the GBM milieu. The tumor ablation was confirmed by MTT and Annexin(v)-PI assays, apoptotic proteins expression via western blot and ROS level detection in vitro, whereas tumor volume, weight, survival rate, and relative photon flux in the xenograft and orthoptic TMZ-resistant GBM murine models as in vivo. Conclusion We found this nanomedicine-based ultrasound modality highly efficient in GBM treatment and is of future clinical application value due to the employment of already FDA-approved techniques and nanomedicine.
Background Glioblastoma Multiforme (GBM) is one the most daunting issue to modern therapeutics, with a higher mortality rate post-diagnosis. Temozolomide (TMZ) is the only available treatment; however, the frequent resistance leaves the oncologists at the dead end. Therefore, new approaches to circumvent the GBM are highly desired. In this contribution, we have employed TiO2 nanosticks loaded with TMZ as nanomedicine for TMZ resistant GBM resection. Results The ultrasonication triple action effect could highly facilitate the tumor ablation by enhancing the TiO2 nanosticks traversing across BBB, releasing the TMZ payload from TiO2 nanosticks and Reactive Oxygen Species (ROS) generation from TiO2 nanosticks within GBM milieu. The tumor ablation was confirmed by MTT and Annexin(v)-PI assays, apoptotic proteins expression via western blot and ROS level detection in vitro, whereas tumor volume, weight, survival rate, and relative photon flux in the xenograft and orthoptic TMZ resistant GBM murine models as in vivo. Conclusion We found this nanomedicine-based ultrasound modality highly efficient in GBM treatment and is of future clinical application value due to employment of already FDA approved techniques and nanomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.