The gut microbiome is the term given to describe the vast collection of symbiotic microorganisms in the human gastrointestinal system and their collective interacting genomes. Recent studies have suggested that the gut microbiome performs numerous important biochemical functions for the host, and disorders of the microbiome are associated with many and diverse human disease processes. Systems biology approaches based on next generation 'omics' technologies are now able to describe the gut microbiome at a detailed genetic and functional (transcriptomic, proteomic and metabolic) level, providing new insights into the importance of the gut microbiome in human health, and they are able to map microbiome variability between species, individuals and populations. This has established the importance of the gut microbiome in the disease pathogenesis for numerous systemic disease states, such as obesity and cardiovascular disease, and in intestinal conditions, such as inflammatory bowel disease. Thus, understanding microbiome activity is essential to the development of future personalized strategies of healthcare, as well as potentially providing new targets for drug development. Here, we review recent metagenomic and metabonomic approaches that have enabled advances in understanding gut microbiome activity in relation to human health, and gut microbial modulation for the treatment of disease. We also describe possible avenues of research in this rapidly growing field with respect to future personalized healthcare strategies.
Metabolic phenotyping involves the comprehensive analysis of biological fluids or tissue samples. This analysis allows biochemical classification of a person's physiological or pathological states that relate to disease diagnosis or prognosis at the individual level and to disease risk factors at the population level. These approaches are currently being implemented in hospital environments and in regional phenotyping centres worldwide. The ultimate aim of such work is to generate information on patient biology using techniques such as patient stratification to better inform clinicians on factors that will enhance diagnosis or the choice of therapy. There have been many reports of direct applications of metabolic phenotyping in a clinical setting.
Background and aims Bariatric surgery is increasingly performed worldwide to treat morbid obesity and is also known as metabolic surgery to reflect its beneficial metabolic effects especially with respect to improvement in type 2 diabetes. Understanding surgical weight loss mechanisms and metabolic modulation is required to enhance patient benefits and operative outcomes.Methods The authors applied a parallel and statistically integrated bacterial profiling and metabonomic approach to characterise Roux-en-Y gastric bypass (RYGB) effects in a non-obese rat model. Results Substantial shifts of the main gut phyla towards higher concentrations of Proteobacteria (52-fold), specifically Enterobacter hormaechei, are shown. Low concentrations of Firmicutes (4.5-fold) and Bacteroidetes (twofold) in comparison with sham-operated rats were also found. Faecal extraction studies revealed a decrease in faecal bile acids and a shift from protein degradation to putrefaction through decreased faecal tyrosine with concomitant increases in faecal putrescine and diaminoethane. Decreased urinary amines and cresols were found and indices of modulated energy metabolism were demonstrated after RYGB, including decreased urinary succinate, 2-oxoglutarate, citrate and fumarate. These changes could also indicate renal tubular acidosis, which is associated with increased flux of mitochondrial tricarboxylic acid cycle intermediates. A surgically induced effect on the gutebraineliver metabolic axis is inferred from modulated faecal g-aminobutyric acid and glutamate. Conclusion This profound co-dependence of mammalian and microbial metabolism, which is systematically altered after RYGB surgery, suggests that RYGB exerts local and global metabolic effects. The effect of RYGB surgery on the host metabolicemicrobial cross-talk augments our understanding of the metabolic phenotype of bariatric procedures and can facilitate enhanced treatments for obesity-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.