The composition and activity of the gut microbiota codevelop with the host from birth and is subject to a complex interplay that depends on the host genome, nutrition, and life-style. The gut microbiota is involved in the regulation of multiple host metabolic pathways, giving rise to interactive host-microbiota metabolic, signaling, and immune-inflammatory axes that physiologically connect the gut, liver, muscle, and brain. A deeper understanding of these axes is a prerequisite for optimizing therapeutic strategies to manipulate the gut microbiota to combat disease and improve health.
Metabolic profiling, metabolomic and metabonomic studies mainly involve the multicomponent analysis of biological fluids, tissue and cell extracts using NMR spectroscopy and/or mass spectrometry (MS). We summarize the main NMR spectroscopic applications in modern metabolic research, and provide detailed protocols for biofluid (urine, serum/plasma) and tissue sample collection and preparation, including the extraction of polar and lipophilic metabolites from tissues. 1H NMR spectroscopic techniques such as standard 1D spectroscopy, relaxation-edited, diffusion-edited and 2D J-resolved pulse sequences are widely used at the analysis stage to monitor different groups of metabolites and are described here. They are often followed by more detailed statistical analysis or additional 2D NMR analysis for biomarker discovery. The standard acquisition time per sample is 4-5 min for a simple 1D spectrum, and both preparation and analysis can be automated to allow application to high-throughput screening for clinical diagnostic and toxicological studies, as well as molecular phenotyping and functional genomics.
The later that a molecule or molecular class is lost from the drug development pipeline, the higher the financial cost. Minimizing attrition is therefore one of the most important aims of a pharmaceutical discovery programme. Novel technologies that increase the probability of making the right choice early save resources, and promote safety, efficacy and profitability. Metabonomics is a systems approach for studying in vivo metabolic profiles, which promises to provide information on drug toxicity, disease processes and gene function at several stages in the discovery-and-development process.
Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin pairs remained well-nourished, while 43% became discordant and 7% manifested concordance for acute malnutrition. Both children in twin pairs discordant for kwashiorkor were treated with a peanut-based, ready-to-use therapeutic food (RUTF). Time-series metagenomic studies revealed that RUTF produced a transient maturation of metabolic functions in kwashiorkor microbiomes that regressed when RUTF was stopped. Previously frozen fecal communities from several discordant pairs were each transplanted into gnotobiotic mice. The combination of Malawian diet and kwashiorkor microbiome produced marked weight loss in recipient mice, accompanied by perturbations in amino acid, carbohydrate and intermediary metabolism that were only transiently ameliorated with RUTF. These findings implicate the gut microbiome as a causal factor in kwashiorkor.
The characteristics of the OPLS method have been investigated for the purpose of discriminant analysis (OPLS-DA). We demonstrate how class-orthogonal variation can be exploited to augment classification performance in cases where the individual classes exhibit divergence in within-class variation, in analogy with soft independent modelling of class analogy (SIMCA) classification. The prediction results will be largely equivalent to traditional supervised classification using PLS-DA if no such variation is present in the classes. A discriminatory strategy is thus outlined, combining the strengths of PLS-DA and SIMCA classification within the framework of the OPLS-DA method. Furthermore, resampling methods have been employed to generate distributions of predicted classification results and subsequently assess classification belief. This enables utilisation of the class-orthogonal variation in a proper statistical context. The proposed decision rule is compared to common decision rules and is shown to produce comparable or less class-biased classification results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.