Robotic magnetic manipulation systems offer a wide range of potential benefits in medical fields, such as precise and selective manipulation of magnetically responsive instruments in difficult‐to‐reach vessels and tissues. However, more preclinical/clinical studies are necessary before robotic magnetic interventional systems can be widely adopted. In this study, a clinically translatable, electromagnetically controllable microrobotic interventional system (ECMIS) that assists a physician in remotely manipulating and controlling microdiameter guidewires in real time, is reported. The ECMIS comprises a microrobotic guidewire capable of active magnetic steering under low‐strength magnetic fields, a human‐scale electromagnetic actuation (EMA) system, a biplane X‐ray imaging system, and a remote guidewire/catheter advancer unit. The proposed ECMIS demonstrates targeted real‐time cardiovascular interventions in vascular phantoms through precise and rapid control of the microrobotic guidewire under EMA. Further, the potential clinical effectiveness of the ECMIS for real‐time cardiovascular interventions is investigated through preclinical studies in coronary, iliac, and renal arteries of swine models in vivo, where the magnetic steering of the microrobotic guidewire and control of other ECMIS modules are teleoperated by operators in a separate control booth with X‐ray shielding. The proposed ECMIS can help medical physicians optimally manipulate interventional devices such as guidewires under minimal radiation exposure.
This study presents the fabrication and characterization of a piezoelectric micromachined ultrasonic transducer (pMUT; radius: 40 µm) using a patterned aluminum nitride (AlN) thin film as the active piezoelectric material. A 20 × 20 array of pMUTs using a 1 µm thick AlN thin film was designed and fabricated on a 2 × 2 mm2 footprint for a high fill factor. Based on the electrical impedance and phase of the pMUT array, the electromechanical coefficient was ~1.7% at the average resonant frequency of 2.82 MHz in air. Dynamic displacement of the pMUT surface was characterized by scanning laser Doppler vibrometry. The pressure output while immersed in water was 19.79 kPa when calculated based on the peak displacement at the resonant frequency. The proposed AlN pMUT array has potential applications in biomedical sensing for healthcare, medical imaging, and biometrics.
Medical Robotics
In article number 2102529 by Hongsoo Choi and co‐workers, a proposed electromagnetically controllable microrobotic system can help interventional medical practitioners optimally manipulate interventional devices such as guidewires for the treatment of cardiovascular diseases. The system can be teleoperated, protecting medical staff from ionizing radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.