Cell signalling through Frizzled receptors has evolved to considerable complexity within the metazoans. The Frizzled-dependent signalling cascade comprises several branches, whose differential activation depends on specific Wnt ligands, Frizzled receptor isoforms and the cellular context. In Xenopus laevis embryos, the canonical beta-catenin pathway contributes to the establishment of the dorsal-ventral axis. A different branch, referred to as the planar cell polarity pathway, is essential for cell polarization during elongation of the axial mesoderm by convergent extension. Here we demonstrate that a third branch of the cascade is independent of Dishevelled function and involves signalling through trimeric G proteins and protein kinase C (PKC). During gastrulation, Frizzled-7 (Fz7)-dependent PKC signalling controls cell-sorting behaviour in the mesoderm. Loss of zygotic Fz7 function results in the inability of involuted anterior mesoderm to separate from the ectoderm, which leads to severe gastrulation defects. This result provides a developmentally relevant in vivo function for the Fz/PKC pathway in vertebrates.
Protocadherins have homophilic adhesion properties and mediate selective cell–cell adhesion and cell sorting. Knockdown of paraxial protocadherin (PAPC) function in the Xenopus embryo impairs tissue separation, a process that regulates separation of cells of ectodermal and mesodermal origin during gastrulation. We show that PAPC can modulate the activity of the Rho GTPase and c-jun N-terminal kinase, two regulators of the cytoskeletal architecture and effectors of the planar cell polarity pathway. This novel signaling function of PAPC is essential for the regulation of tissue separation. In addition, PAPC can interact with the Xenopus Frizzled 7 receptor, and both proteins contribute to the development of separation behavior by activating Rho and protein kinase Cα
Here we report the cloning of a Xenopus frizzled transmembrane receptor, Xfz7, and describe its expression pattern during early embryogenesis. Xfz7 mRNA is provided maternally and zygotic transcription peaks in gastrula stages. At that time, transcripts are preferentially localized to the marginal zone and become restricted to distinct regions of the tadpoles in tailbud stages. Overexpression of Xfz7 in embryos perturbs the morphogenesis of trunk and tail, blocks convergence-extension movements in animal caps induced with activin and dorsal lip explants and decreases cadherin-mediated cell adhesion. Xfz7 can interact specifically with Xwnt-8b and signal in the canonical, dorsalizing Wnt pathway. Overexpression of Xfz7 does not trigger the Wnt-1-type pathway but acts in a non-canonical Wnt or morphogenetic-effector pathway involving the activation of protein kinase C (PKC). Xfz7 seems to be involved in different aspects of Wnt signaling during the course of embryogenesis.
BackgroundSecreted Frizzled related proteins (SFRPs) are extracellular regulators of Wnt signaling. These proteins contain an N-terminal cysteine rich domain (CRD) highly similar to the CRDs of the Frizzled family of seven-transmembrane proteins that act as Wnt receptors. SFRPs can bind to Wnts and prevent their interaction with the Frizzled receptor. Recently it has been reported that a splice variant of human Frizzled-4 (FZD4S) lacking the transmembrane and the cytoplasmic domains of Frizzled-4 can activate rather than inhibit Wnt-8 activity in Xenopus embryos. This indicates that secreted CRD containing proteins such as Frizzled ecto-domains and SFRPs may not always act as Wnt inhibitors. It is not known how FZD4S can activate Wnt/β-catenin signaling and what biological role this molecule plays in vivo.ResultsHere we report that the Xenopus frizzled-4 is alternatively spliced to give rise to a putative secreted protein that lacks the seven-transmembrane and the cytoplasmic domains. We performed functional experiments in Xenopus embryos to investigate how this novel splicing variant, Xfz4S, can modulate the Wnt/β-catenin pathway. We show that Xfz4S as well as the extracellular domain of Xfz8 (ECD8) can act as both activators and inhibitors of Wnt/β-catenin signaling dependent on the Wnt ligand presented. The positive regulation of Wnt/β-catenin signaling by the extracellular domains of Frizzled receptors is mediated by the members of low density lipoprotein receptor-related protein (LRP-5/6) that act as Wnt coreceptors.ConclusionThis work provides evidence that the secreted extracellular domains of Frizzled receptors may act as both inhibitors and activators of Wnt signaling dependent on the Wnt ligand presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.