Purpose The dimensional accuracy of three‐dimensional (3D) printed anatomical models is essential to correctly understand spatial relationships and enable safe presurgical planning. Most recent accuracy studies focused on 3D printing of a single pathology for surgical planning. This study evaluated the accuracy of medical models across multiple pathologies, using desktop inverted vat photopolymerization (VP) to 3D print anatomic models using both rigid and elastic materials. Methods In the primary study, we 3D printed seven models (six anatomic models and one reference cube) with volumes ranging from ~2 to ~209 cc. The anatomic models spanned multiple pathologies (neurological, cardiovascular, abdominal, musculoskeletal). Two solid measurement landing blocks were strategically created around the pathology to allow high‐resolution measurement using a digital micrometer and/or caliper. The physical measurements were compared to the designed dimensions, and further analysis was conducted regarding the observed patterns in accuracy. All of the models were printed in three resins: Elastic, Clear, and Grey Pro in the primary experiments. A full factorial block experimental design was employed and a total of 42 models were 3D printed in 21 print runs. In the secondary study, we 3D printed two of the anatomic models in triplicates selected from the previous six to evaluate the effect of 0.1 mm vs 0.05 mm layer height on the accuracy. Results In the primary experiment, all dimensional errors were less than 1 mm. The average dimensional error across the 42 models was 0.238 ± 0.219 mm and the relative error was 1.10 ± 1.13%. Results from the secondary experiments were similar with an average dimensional error of 0.252 ± 0.213 mm and relative error of 1.52% ± 1.28% across 18 models. There was a statistically significant difference in the relative errors between the Elastic resin and Clear resin groups. We explained this difference by evaluating inverted VP 3D printing peel forces. There was a significant difference between the Solid and Hollow group of models. There was a significant difference between measurement landing blocks oriented Horizontally and Vertically. In the secondary experiments, there was no difference in accuracy between the 0.10 and 0.05 mm layer heights. Conclusions The maximum measured error was less than 1 mm across all models, and the mean error was less than 0.26mm. Therefore, inverted VP 3D printing technology is suitable for medical 3D printing if 1 mm is considered the cutoff for clinical use cases. The 0.1 mm layer height is suitable for 3D printing accurate anatomical models for presurgical planning in a majority of cases. Elastic models, models oriented horizontally, and models that are hollow tend to have relatively higher deviation as seen from experimental results and mathematical model predictions. While clinically insignificant using a 1 mm cutoff, further research is needed to better understand the complex physical interactions in VP 3D printing which influence model accuracy.
Background: Breast cancer is the most commonly diagnosed malignancy in females and frequently requires core needle biopsy (CNB) to guide management. Adequate training resources for CNB suffer tremendous limitations in reusability, accurate simulation of breast tissue, and cost. The relatively recent advent of 3D printing offers an alternative for the development of breast phantoms for training purposes. However, the feasibility of this technology for the purpose of ultrasound (US) guided breast intervention has not been thoroughly studied. Methods: We designed three breast phantom models that were printed in multiple resins available through Stratasys, including VeroClear, TangoPlus and Tissue Matrix. We also constructed several traditional breast phantoms using chicken breast and Knox gelatin for comparison. These phantoms were compared side-by-side for ultrasound penetrance, simulation of breast tissue integrity, anatomic accuracy, reusability, and cost. Results: 3D printed breast phantoms were more anatomically accurate models than traditional breast phantoms. The chicken breast phantom provided acceptable US beam penetration and material hardness for simulation of human breast tissue integrity. Sonographic image quality of the chicken breast phantom was the most accurate overall. The gelatin-based phantom also had acceptable US beam penetration and image quality; however, this material was too soft and poorly simulated breast tissue integrity. 3D printed phantoms were not visible under US. Conclusions: There is a large unmet need for a printable material that is truly compatible with multimodality imaging for breast and other soft tissue intervention. Further research is warranted to create a realistic, reusable and affordable material to 3D print phantoms for US-guided intervention training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.