Cisplatin is well known as a potent anti-cancer agent against colon cancer. However, alpha interferons are also widely used for cancer suppression. This in vitro study was designed to investigate and compare the cancer suppression function of alpha interferon in colon cancer with Cisplatin. The analysis used a human SW 480 cancer cell line with RPMI-1630 culture media. Six dilutions of interferon (2.5 μg/ml, 1.25 μg/ml, 0.562 μg/ml, 0.286 μg/ml, 0.143 μg/ml, and 0.057 μg/ml) and six dilutions of cisplatin (100 μg/ml, 50 μg/ml, 25 μg/ml, 6.25 μg/ml, and 3.125) were used at 24, 48 and 72 hours along with the presence of control groups. Following this, results were observed by ELISA plate reader, and percentage inhibition was calculated using ANOVA analysis. The interferon and cisplatin percentage of inhibition was comparable with higher inhibition rates observed with alpha interferon. The statistical analysis showed that the maximum inhibition was observed at a 0.143 μg/ml interferon concentration when exposed for 48 to 72 hours. This in vitro analysis demonstrated the anti-cancer activity of alpha interferon and its advanced inhibitory activity compared to Cisplatin.
Staphylokinase (SAK), also known as staphylococcal fibrinolysin, is a protein with a molecular mass of about 15 kDa produced by Staphylococcus aureus. Staphylokinase is synthesized in the late exponential phase, similar to streptokinase. The current study identified and predicted the protein SAK from Staphylococcus aureus. SAK is a fibrinolytic enzyme of the third generation that acts as an indirect activator of plasminogen. The current study cloned and expressed SAK protein isolated from Staphylococcus aureus and used in the form of a grid for enhancement of SAK Catalyst with PCR, disengagement, and change into articulation vector PET24b(+). The recombinant plasmid was changed into E. coli strain BL21 (codon additionally to 440) acceptance with isopropyl β-D-1-thiogalactopyranoside (IPTG).
Interferon'splays role in innate immune responses through upregulation of costimulatory molecules and induction of proinflammatory cytokines.interferons including interferon alpha (IFNA). The present study characterized IFNA cDNA and predicted protein.The interferon's play a great role in protection from infections, which have been called by microorganisms, and also have powerful antiproliferation and immunomodulation activity.The purposes of study:cloning andexpression of horse leukocyte interferonand purification the product protein.The results and discussion : In the result we isolated (DNA) from equine leukocyte in blood, which was using in the quality of matrix for amplification of α-interferon gene with PCR HELP, and isolation gene α-interferon and transformation in vector puc18 and expression vector PET24b (+) and recombinant plasmid was transformed into E. coli strain BL21( codon plus 440) induction with IPTG.The results showed the protein having the same molecular weight as horse interferon alphaabout 5.81 kDa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.