Spinal cord stimulation (SCS) applied between T8 and T11 segments has been shown to be effective for the treatment of chronic pain of the lower back and limbs. However, the mechanism of the analgesic effect at these medullary levels remains unclear. Numerous studies relate glial cells with development and maintenance of chronic neuropathic pain. Glial cells are electrically excitable, which makes them a potential therapeutic target using SCS. The aim of this study is to report glia to neuron ratio in thoracic segments relevant to SCS, as well as to characterize the glia cell population at these levels. Dissections from gray and white matter of posterior spinal cord segments (T8, T9, intersection T9/T10, T10 and T11) were obtained from 11 human cadavers for histological analyses. Neuronal bodies and glial cells (microglia, astrocytes and oligodendrocytes) were immunostained, microphotographed and counted using image analysis software. Statistical analyses were carried out to establish significant differences of neuronal and glial populations among the selected segments, between the glial cells in a segment, and glial cells in white and gray matter. Results show that glia to neuron ratio in the posterior gray matter of the human spinal cord within the T8–T11 vertebral region is in the range 11 : 1 to 13 : 1, although not significantly different among vertebral segments. Glia cells are more abundant in gray matter than in white matter, whereas astrocytes and oligodendrocytes are more abundant than microglia (40 : 40 : 20). Interestingly, the population of oligodendrocytes in the T9/T10 intersection is significantly larger than in any other segment. In conclusion, glial cells are the predominant bodies in the posterior gray and white matter of the T8–T11 segments of the human spinal cord. Given the crucial role of glial cells in the development and maintenance of neuropathic pain, and their electrophysiological characteristics, anatomical determination of the ratio of different cell populations in spinal segments commonly exposed to SCS is fundamental to understand fully the biological effects observed with this therapy.
Anxiety and depression exhibit high comorbidity and share the alteration of the amygdala–hippocampal–prefrontal network, playing different roles in the ventral and dorsal hippocampi. Deep brain stimulation of the infralimbic cortex in rodents or the human equivalent—the subgenual cingulate cortex—constitutes a fast antidepressant treatment. The aim of this work was: (1) to describe the oscillatory profile in a rodent model of anxiety, and (2) to deepen the therapeutic basis of infralimbic deep brain stimulation in mood disorders. First, the anxiogenic drug FG-7142 was administered to anaesthetized rats to characterize neural oscillations within the amygdala and the dorsoventral axis of the hippocampus. Next, deep brain stimulation was applied. FG-7142 administration drastically reduced the slow waves, increasing delta, low theta, and beta oscillations in the network. Moreover, FG-7142 altered communication in these bands in selective subnetworks. Deep brain stimulation of the infralimbic cortex reversed most of these FG-7142 effects. Cross-frequency coupling was also inversely modified by FG-7142 and by deep brain stimulation. Our study demonstrates that the hyperactivated amygdala–hippocampal network associated with the anxiogenic drug exhibits an oscillatory fingerprint. The study contributes to comprehending the neurobiological basis of anxiety and the effects of infralimbic deep brain stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.