The use of diiodooctane as processing additive for construction of PCPDTBT:PCBM solar cells results in a profound change in photophysical behavior of this blend. In the improved morphology obtained with the additive, recombination of charge carriers to the lowest triplet excited state is suppressed. This contributes to the boost in solar power conversion efficiency induced by the use of the processing agent.
Mixtures of conjugated polymers and fullerenes command considerable attention for application in organic solar cells. To increase their efficiency, the design of new materials that absorb at longer wavelengths is of substantial interest. We have prepared such low band gap polymers using the donor-acceptor route, which is based on the concept that the interaction between alternating donors and acceptors results in a compressed band gap. Furthermore, for application in photovoltaic devices, sufficient polymer solubility is required. We have prepared four low band gap conjugated polymers, with a bis(1-cyano-2-thienylvinylene)phenylene base structure, and achieved an excellent solubility by the introduction of long alkoxy and alkyl side chains. The polymers were synthesized via an oxidative polymerization. Their electronic properties were determined from electrochemical and optical measurements, which confirm that they indeed have a low band gap. In the blend of such a low band gap polymer with PCBM, evidence for efficient charge transfer was obtained from PL and EPR measurements. However, bulk heterostructure solar cells made of such blends display only low efficiencies, which is attributed to low charge carrier mobilities.
The W-band continuous-wave electron paramagnetic resonance (EPR) analysis of chemically induced polarons in drop-cast and spin-coated polyphenylenevinylene-type and polythiophene-type polymer films reveals rhombic g tensors in both cases. The dependence of the W-band EPR signals on the orientation of the spin-coated films with respect to the magnetic field indicates a high degree of backbone alignment with the substrate and allows a partial assignment of the g tensor orientation. The derived molecular orientations of the polymer chains in the spin-coated films show clear differences between the two types of polymers. The proton hyperfine interactions obtained from X-band HYSCORE (hyperfine sublevel correlation) and Q- and W-band pulsed ENDOR (electron-nuclear double resonance) experiments are interpreted in terms of earlier theoretical studies on the extension of the polarons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.