Photocurrent generation by charge-transfer (CT) absorption is detected in a range of conjugated polymer: [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) based solar cells. The low intensity CT absorption bands are observed using a highly sensitive measurement of the external quantum efficiency (EQE) spectrum by means of Fourier-transform photocurrent spectroscopy (FTPS). The presence of these CT bands implies the formation of weak groundstate charge-transfer complexes in the studied polymer:fullerene blends. The effective band gap (E g ) of the material blends used in these photovoltaic devices is determined from the energetic onset of the photocurrent generated by CT absorption. It is shown that for all
In high performance polymer:fullerene bulk heterojunction solar cells the nanoscale morphology of interpenetrating acceptor:donor materials is optimised through appropriate preparation conditions such as annealing and choice of solvent, but this initial state-of-the-art morphology will not remain stable during long term operation. We report the effects of prolonged storage at elevated temperatures on both the morphology and the photovoltaic performance for the model systems MDMO-PPV:PCBM and P3HT:PCBM as compared to 'High T g PPV':PCBM based solar cells, where the 'High T g PPV' is characterised by its high glass transition temperature (138°C). In-situ monitoring of the photo-current-voltage characteristics at elevated temperatures, in combination with a systematic Transmission Electron Microscopy (TEM) study and complementary optical spectroscopy, reveals distinct degradation 1 kinetics and morphological changes that indicate the occurrence of different underlying physico-chemical mechanisms.
Current organic semiconductors for organic photovoltaics (OPV) have relative dielectric constants (relative permittivities, ε
r) in the range of 2–4. As a consequence, Coulombically bound electron‐hole pairs (excitons) are produced upon absorption of light, giving rise to limited power conversion efficiencies. We introduce a strategy to enhance ε
r of well‐known donors and acceptors without breaking conjugation, degrading charge carrier mobility or altering the transport gap. The ability of ethylene glycol (EG) repeating units to rapidly reorient their dipoles with the charge redistributions in the environment was proven via density functional theory (DFT) calculations. Fullerene derivatives functionalized with triethylene glycol side chains were studied for the enhancement of ε
r together with poly(p‐phenylene vinylene) and diketopyrrolopyrrole based polymers functionalized with similar side chains. The polymers showed a doubling of ε
r with respect to their reference polymers in identical backbone. Fullerene derivatives presented enhancements up to 6 compared with phenyl‐C61‐butyric acid methyl ester (PCBM) as the reference. Importantly, the applied modifications did not affect the mobility of electrons and holes and provided excellent solubility in common organic solvents.
Mixtures of conjugated polymers and fullerenes command considerable attention for application in organic solar cells. To increase their efficiency, the design of new materials that absorb at longer wavelengths is of substantial interest. We have prepared such low band gap polymers using the donor-acceptor route, which is based on the concept that the interaction between alternating donors and acceptors results in a compressed band gap. Furthermore, for application in photovoltaic devices, sufficient polymer solubility is required. We have prepared four low band gap conjugated polymers, with a bis(1-cyano-2-thienylvinylene)phenylene base structure, and achieved an excellent solubility by the introduction of long alkoxy and alkyl side chains. The polymers were synthesized via an oxidative polymerization. Their electronic properties were determined from electrochemical and optical measurements, which confirm that they indeed have a low band gap. In the blend of such a low band gap polymer with PCBM, evidence for efficient charge transfer was obtained from PL and EPR measurements. However, bulk heterostructure solar cells made of such blends display only low efficiencies, which is attributed to low charge carrier mobilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.