The combination of decellularized nerve allograft and adiposederived stromal cells (ASCs) represents a good alternative to nerve autograft for bridging peripheral nerve defects by providing physical guidance and biologic cues. However, the regeneration outcome of acellular nerve allograft (ANA) is often inferior to autograft. Therefore, we hypothesized that acetyl-Lcarnitine (ALCAR) treatment and implantation of ASC-embedded ANA would work synergistically to promote nerve regeneration. Seventy rats were randomly allocated into seven experimental groups (n 5 10), including the healthy control group, sham surgery group, autograft group, ANA group, ANA 1 ASCs group, ANA 1 ALCAR group (50 mg/kg for 2 weeks), and ANA 1 ASCs 1 ALCAR (50 mg/kg for 2 weeks) group. All grafts were implanted to bridge long-gap (10-mm) sciatic nerve defects. Functional, electrophysiological, and morphologic analysis was conducted during the experimental period. We found that ALCAR potentiated the survival and retention of transplanted ASCs and upregulated the expression of neurotrophic factor mRNAs in transplanted grafts. Sixteen weeks following implantation in the rat, the ANA supplemented by ASCs was capable of supporting reinnervation across a 10-mm sciatic nerve gap, with results close to that of the autografts in terms of functional, electrophysiological, and histologic assessments. Results demonstrated that ALCAR treatment improved regenerative effects of ANA combined with ASCs on reconstruction of a 10-mm sciatic nerve defect in rat comparable to those of autograft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.