Summary The present study has been carried out to investigate the effect of aqueous extract of shallot (Allium ascalonicum) and garlic (Allium satium) on the fasting insulin resistance index (FIRI) and intraperitoneal glucose tolerance test (IPGTT) of fructose-induced insulin resistance rats. Male albino Wistar rats were fed either normal or high-fructose diet for a period of eight weeks. Fasting blood glucose level, fasting blood triglyceride level, FIRI, and the area under the glucose tolerance curve were significantly elevated in fructose-fed animals. Fructose-induced insulin resistance rats treated by aqueous shallot or garlic extract (500 mg/ kg body weight/day, i.p.) for duration of eight weeks. Control animals only received normal saline (0.9%). The results showed that neither shallot nor garlic extracts significantly altered the FIRI and the IPGTT at the fourth week after treatment. The fasting blood glucose in fructose-induced insulin resistance animals has been significantly decreased in 8-week treated animals by both shallot and garlic extracts. Shallot extract administration, but not garlic extract, for a period of eight weeks can significantly improve the intraperitoneal glucose tolerance and diminish the FIRI. These results indicate that shallot and garlic extracts have a hypoglycemic influence on the fructose-induced insulin resistance animals and aqueous shallot extract is a stronger hypoglycemic agent than the garlic extract.
Background: Ocimum species (Lamiaceae) has been traditionally used for treatment of upper respiratory tract infections, bronchitis, coughs, sore throat, and wound healing. The Immunomodulatory and anti-inflammatory effects of hydro-ethanolic extract of Ocimum basilicum (O. basilicum) leaves was examined in ovalbumin sensitized animals. Methods: Wistar rats were divided to six groups; non-sensitized, sensitized to ovalbumin, sensitized and treated with dexamethasone (1.25 μg/mL), and O. basilicum extract (0.75, 1.50 and 3.00 mg/mL) in drinking water for 21 days. The levels of interleukin 4 (IL-4), interferon gamma (IFN-γ), IFN-γ/IL-4 ratio, immunoglobulin E (IgE), phospholipase A 2 (PLA 2) and total protein (TP) in BALF, and lung pathological changes were examined. Results: A significant increase in IL-4, IgE, PLA 2 and TP levels, all lung pathological indices as well as significant decrease in IFN-γ/IL-4 ratio was seen in the asthmatic compared to the control rats (P < 0.05 to P < 0.001). Treatment with O. basilicum extract resulted in decreased IL-4, IgE, PLA 2 and TP levels, but increased IFN-γ/IL-4 ratio compared to untreated sensitized rats (P < 0.01 to P < 0.001). The plant significantly improved the pathological changes of sensitized rats (P < 0.05 to P < 0.01). The improvement effects of higher concentrations of the O. basilicum extract were significantly more than those of dexamethasone (P < 0.05 to P < 0.001). Conclusion: The improvement effects of O. basilicum on pathological changes, immunological and inflammatory markers in sensitized rats comparable or even more potent than dexamethasone suggests the therapeutic potential of the plant in asthma.
The utilization of conductive polymers for fabrication of neural scaffolds have attracted much interest because of providing a microenvironment which can imitate nerve tissues. In this study, polypyrrole (PPy)–alginate (Alg) composites were prepared using different percentages of alginate and pyrrole by oxidative polymerization method using FeCl3 as an oxidant and electrical conductivity of composites were measured by four probe method. In addition, chitosan-based nanoparticles were synthesized by ionic gelation method and after characterization merged into PPy–Alg composite in order to fabricate a conductive, hydrophilic, processable and stable scaffold. Physiochemical characterization of nanochitosan/PPy–Alg scaffold such as electrical conductivity, porosity, swelling and degradation was investigated. Moreover, cytotoxicity and proliferation were examined by culturing OLN-93 neural and human dermal fibroblasts cells on the Nanochitosan/PPy–Alg scaffold. Due to the high conductivity, the film with ratio 2:10 (PPy–Alg) was recognized more suitable for fabrication of the final scaffold. Results from FT-IR and SEM, evaluation of porosity, swelling and degradation, as well as viability and proliferation of OLN-93 neural and fibroblast cells confirmed cytocompatiblity of the Nanochitosan/PPy–Alg scaffold. Based on the features of the constructed scaffold, Nanochitosan/PPy–Alg scaffold can be a proper candidate for neural tissue engineering.
The obtained results revealed that minocycline has anticonvulsant effect on seizures induced by amygdala kindling. Thus, it may be useful for epilepsy treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.