BackgroundThe breakpoint median in the set Sn of permutations on n terms is known to have some unusual behavior, especially if the input genomes are maximally different to each other. The mathematical study of the set of medians is complicated by the facts that breakpoint distance is not a metric but a pseudo-metric, and that it does not define a geodesic space.ResultsWe introduce the notion of partial geodesic, or geodesic patch between two permutations, and show that if two permutations are medians, then every permutation on a geodesic patch between them is also a median. We also prove the conjecture that the input permutations themselves are medians.
We prove that for general models of random gene-order evolution of k ≥ 3 genomes, as the number of genes n goes to ∞, the median value approximates k times the divergence time if the number of rearrangements is less than cn/4 for any c <1. For some c* ≥ 1, if the number of rearrangements is greater than c*n/4, this approximation does not hold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.