Short-Term Load Forecasting (STLF) is the most appropriate type of forecasting for both electricity consumers and generators. In this paper, STLF in a Microgrid (MG) is performed via the hybrid applications of machine learning. The proposed model is a modified Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) called SVR-LSTM. In order to forecast the load, the proposed method is applied to the data related to a rural MG in Africa. Factors influencing the MG load, such as various household types and commercial entities, are selected as input variables and load profiles as target variables. Identifying the behavioral patterns of input variables as well as modeling their behavior in short-term periods of time are the major capabilities of the hybrid SVR-LSTM model. To present the efficiency of the suggested method, the conventional SVR and LSTM models are also applied to the used data. The results of the load forecasts by each network are evaluated using various statistical performance metrics. The obtained results show that the SVR-LSTM model with the highest correlation coefficient, i.e., 0.9901, is able to provide better results than SVR and LSTM, which have the values of 0.9770 and 0.9809, respectively. Finally, the results are compared with the results of other studies in this field, which continued to emphasize the superiority of the SVR-LSTM model.
Nowadays, since energy management of buildings contributes to the operation cost, many efforts are made to optimize the energy consumption of buildings. In addition, the most consumed energy in the buildings is assigned to the indoor heating and cooling comforts. In this regard, this paper proposes a heating and cooling load forecasting methodology, which by taking this methodology into the account energy consumption of the buildings can be optimized. Multilayer perceptron (MLP) and support vector regression (SVR) for the heating and cooling load forecasting of residential buildings are employed. MLP and SVR are the applications of artificial neural networks and machine learning, respectively. These methods commonly are used for modeling and regression and produce a linear mapping between input and output variables. Proposed methods are taught using training data pertaining to the characteristics of each sample in the dataset. To apply the proposed methods, a simulated dataset will be used, in which the technical parameters of the building are used as input variables and heating and cooling loads are selected as output variables for each network. Finally, the simulation and numerical results illustrates the effectiveness of the proposed methodologies.
The useful planning and operation of the energy system requires a sustainability assessment of the system, in which the load model adopted is the most important factor in sustainability assessment. Having information about energy consumption patterns of the appliances allows consumers to manage their energy consumption efficiently. Non-intrusive load monitoring (NILM) is an effective tool to recognize power consumption patterns from the measured data in meters. In this paper, an unsupervised approach based on dimensionality reduction is applied to identify power consumption patterns of home electrical appliances. This approach can be utilized to classify household activities of daily life using data measured from home electrical smart meters. In the proposed method, the power consumption curves of the electrical appliances, as high-dimensional data, are mapped to a low-dimensional space by preserving the highest data variance via principal component analysis (PCA). In this paper, the reference energy disaggregation dataset (REDD) has been used to verify the proposed method. REDD is related to real-world measurements recorded at low-frequency. The presented results reveal the accuracy and efficiency of the proposed method in comparison to conventional procedures of NILM.
In recent years, the introduction of practical and useful solutions to solve the non-intrusive load monitoring (NILM) as one of the sub-sectors of energy management has posed many challenges. In this paper, an effective and applicable solution based on deep learning called convolutional neural network (CNN) is employed for this purpose. The proposed method with the layer-to-layer structure and extraction of features in the power consumption (PC) curves of each household appliances will be able to detect and distinguish the type of electrical appliances (EAs). Likewise, the load disaggregation for the total home PC will be based on identifying the PC patterns of each EA. To do this, experimental evaluation of reference energy data disaggregation dataset (REDD) related to real-world data and measurement at low frequency is used. The PC curves of each EA are used as input data for training and testing the network. After initial training and testing by the PC data of EAs, the total PC of building obtained from the smart meter are used as input for each network in order to load disaggregation. The trained networks prove to be able to disaggregate the total PC for REDD houses 1, 2, 3, and 4 with a 96.17% mean accuracy. The presented results show the precision and efficiency of the suggested technique for solving NILM problems compared to other used methods.
Accurate and fast fault detection in transmission lines is of high importance to maintain the reliability of power systems. Most of the existing methods suffer from false detection of high-impedance faults. In this paper, the transfer function (TF) method is introduced to evaluate the effect of impedance and location of faults by analyzing the voltage and current signals in the frequency domain. Interpretation of the results of the TF method is considered as a weakness of this method. In order to alleviate this problem, a convolutional neural network (CNN) and the hybrid model of deep reinforcement learning (DRL) are utilized to identify and locate single-phase to ground short circuit faults in transmission lines. Single-phase to ground short circuit faults with various fault impedances are applied on an IEEE standard transmission line system. Then, the TF traces are calculated and are collected as input datasets for the proposed models. The fault location results for each network are evaluated via various statistical performance metrics such as correlation coefficient (R), mean squared error (MSE), and root mean squared error (RMSE). The R-value of the CNN and DRL models in fault identification is presented as 96.12% and 98.04%, respectively. Finally, in the early detection of single-phase to ground short circuit fault location (high impedance), the results revealed the efficiency of the DRL model with R=96.61% compared to CNN with R=95.21%. INDEX TERMSTransmission line faults, single-phase to ground short circuit, transfer function, deep reinforcement learning, convolutional neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.