Short-Term Load Forecasting (STLF) is the most appropriate type of forecasting for both electricity consumers and generators. In this paper, STLF in a Microgrid (MG) is performed via the hybrid applications of machine learning. The proposed model is a modified Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) called SVR-LSTM. In order to forecast the load, the proposed method is applied to the data related to a rural MG in Africa. Factors influencing the MG load, such as various household types and commercial entities, are selected as input variables and load profiles as target variables. Identifying the behavioral patterns of input variables as well as modeling their behavior in short-term periods of time are the major capabilities of the hybrid SVR-LSTM model. To present the efficiency of the suggested method, the conventional SVR and LSTM models are also applied to the used data. The results of the load forecasts by each network are evaluated using various statistical performance metrics. The obtained results show that the SVR-LSTM model with the highest correlation coefficient, i.e., 0.9901, is able to provide better results than SVR and LSTM, which have the values of 0.9770 and 0.9809, respectively. Finally, the results are compared with the results of other studies in this field, which continued to emphasize the superiority of the SVR-LSTM model.
Nowadays, supplying demand load and maintaining sustainable energy are important issues that have created many challenges in power systems. In these types of problems, short-term load forecasting has been proposed as one of the management and energy supply modes in power systems. In this paper, after reviewing various load forecasting techniques, a deep learning method called bidirectional long short-term memory (Bi-LSTM) is presented for short-term load forecasting in a microgrid. By collecting relevant features available in the input data at the training stage, it is shown that the proposed procedure enjoys important properties, such as its great ability to process time series data. A microgrid in rural Sub-Saharan Africa, including household and commercial loads, was selected as the case study. The parameters affecting the formation of household and commercial load profiles are considered as input variables, and the total household and commercial load profiles of the microgrid are considered as the target. The Bi-LSTM network is trained by input variables to forecast the microgrid load on an hourly basis by recognizing the consumption pattern. Various performance evaluation indicators such as the correlation coefficient (R), mean squared error (MSE), and root mean squared error (RMSE) are utilized to analyze the forecast results. In addition, in a comparative approach, the performance of the proposed method is compared and evaluated with other methods used in similar studies. The results presented for the training phase show an accuracy of R = 99.81% for the Bi-LSTM network. The test and load forecasting stage are performed by the Bi-STLM network, with an accuracy of R = 99.34% and forecasting errors of MSE = 0.1042 and RMSE = 0.3243. The results confirm the high performance of the proposed Bi-LSTM technique, with a high correlation coefficient when compared to other methods used for short-term load forecasting.
Objective. Speech perception in cocktail party scenarios has been the concern of a group of researchers who are involved with the design of hearing-aid devices. Approach. In this paper, a new unified ear-EEG-based binaural speech enhancement system is introduced for hearing-impaired (HI) listeners. The proposed model, which is based on auditory attention detection (AAD) and individual hearing threshold (HT) characteristics, has four main processing stages. In the binaural processing stage, a system based on the deep neural network is trained to estimate auditory ratio masks for each of the speakers in the mixture signal. In the EEG processing stage, AAD is employed to select one ratio mask corresponding to the attended speech. Here, the same EEG data is also used to predict the HTs of listeners who participated in the EEG recordings. The third stage, called insertion gain computation, concerns the calculation of a special amplification gain based on individual HTs. Finally, in the selection-resynthesis-amplification stage, the attended speech signals of the target are resynthesized based on the selected auditory mask and then are amplified using the computed insertion gain. Main results. The detection of the attended speech and the HTs are achieved by classifiers that are trained with features extracted from the scalp EEG or the ear EEG signals. The results of evaluating AAD and HT detection show high detection accuracies. The systematic evaluations of the proposed system yield substantial intelligibility and quality improvements for the HI and normal-hearingaudiograms. Significance. The AAD method determines the direction of attention from single-trial EEG signals without access to audio signals of the speakers. The amplification procedure could be adjusted for each subject based on the individual HTs. The present model has the potential to be considered as an important processing tool to personalize the neuro-steered hearing aids.
Today, introducing useful and practical solutions to residential load disaggregation as subsets of energy management has created numerous challenges. In this study, an intelligence hybrid solution based on manifold learning and deep learning applications is presented. The proposed solution presents a combined structure of Laplacian eigenmaps (LE), a convolutional neural network (CNN), and a recurrent neural network (RNN), called LE-CRNN. In the proposed model architecture, LE, with its high ability in dimensional reduction, transfers the salient features and specific values of power consumption curves (PCCs) of household electrical appliances (HEAs) to a low-dimensional space. Then, the combined model of CRNN significantly improves the structure of CNN in fully connected layers so that the process of identification and separation of the HEA type can be performed without overfitting problems and with very high accuracy. In order to implement the suggested model, two real-world databases have been used. In a separate scenario, a conventional CNN is applied to the data for comparing the performance of the suggested model with the CNN. The designed networks are trained and validated using the PCCs of HEAs. Then, the whole energy consumption of the building obtained from the smart meter is used for load disaggregation. The trained networks, which contain features extracted from PCCs of HEAs, prove that they can disaggregate the total power consumption for houses intended for the Reference Energy Disaggregation Data Set (REDD) and Almanac of Minutely Power Dataset (AMPds) with average accuracies (Acc) of 97.59% and 97.03%, respectively. Finally, in order to show the accuracy of the developed hybrid model, the obtained results in this study are compared with the results of similar works for the same datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.