Early clinical diagnosis and treatment of disease rely heavily on measuring the many various types of medical information that are scattered throughout the body. Continuous and accurate monitoring of the human body is required in order to identify abnormal medical signals and to locate the factors that contribute to their occurrence in a timely manner. In order to fulfill this requirement, a variety of battery-free and self-powered methods of information collecting have been developed. For the purpose of a health monitoring system, this paper presents smart wearable sensors that are based on triboelectric nanogenerators (TENG) and piezoelectric nanogenerators (PENG), as well as hybrid nanogenerators that combine piezoelectric and triboelectric nanogenerators (PTNG). Following the presentation of the PENG and TENG principles, a summary and discussion of the most current developments in self-powered medical information sensors with a variety of purposes, structural designs, and electric performances follows. Wearable sensors that generate their own electricity are crucial not only for the proper development of children and patients with unique conditions, but for the purpose of maintaining checks on the wellbeing of the elderly and those who have recently recovered from illness, and for administering any necessary medical care. This work sought to do two things at once: provide perspectives for health monitoring, and open up new avenues for the analysis of long-distance biological movement status.
Triboelectric nanogenerators (TENG) have gained prominence in recent years, and their structural design is crucial for improvement of energy harvesting performance and sensing. Wearable biosensors can receive information about human health without the need for external charging, with energy instead provided by collection and storage modules that can be integrated into the biosensors. However, the failure to design suitable components for sensing remains a significant challenge associated with biomedical sensors. Therefore, design of TENG structures based on the human body is a considerable challenge, as biomedical sensors, such as implantable and wearable self-powered sensors, have recently advanced. Following a brief introduction of the fundamentals of triboelectric nanogenerators, we describe implantable and wearable self-powered sensors powered by triboelectric nanogenerators. Moreover, we examine the constraints limiting the practical uses of self-powered devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.