Sulfasalazine is a commonly used drug for the treatment of rheumatoid arthritis and inflammatory bowel disease. There are several cases of renal injury encompass sulfasalazine administration in humans. The mechanism of sulfasalazine adverse effects toward kidneys is obscure. Oxidative stress and its consequences seem to play a role in the sulfasalazine-induced renal injury. The current investigation was designed to investigate the effect of sulfasalazine on kidney mitochondria. Rats received sulfasalazine (400 and 600 mg/kg/day, oral) for 14 consecutive days. Afterward, kidney mitochondria were isolated and assessed. Sulfasalazine-induced renal injury was biochemically evident by the increase in serum blood urea nitrogen (BUN), gamma-glutamyl transferase (c-GT), and creatinine (Cr). Histopathological presentations of the kidney in sulfasalazine-treated animals revealed by interstitial inflammation, tubular atrophy, and tissue necrosis. Markers of oxidative stress including an increase in reactive oxygen species (ROS) and lipid peroxidation (LPO), a defect in tissue antioxidant capacity, and glutathione (GSH) depletion were also detected in the kidney of sulfasalazine-treated groups. Decreased mitochondrial succinate dehydrogenase activity (SDA), mitochondrial depolarization, mitochondrial GSH depletion, increase in mitochondrial ROS, LPO, and mitochondrial swelling were also evident in sulfasalazine-treated groups. Current data suggested that oxidative stress and mitochondrial injury might be involved in the mechanism of sulfasalazine-induced renal injury.
ARTICLE HISTORY
Introduction: Sulfasalazine is a drug commonly administrated against inflammatory-based disorders. On the other hand, kidney and liver injury are serious adverse events accompanied by sulfasalazine administration. No specific therapeutic option is available against this complication. The current investigation was designed to evaluate the potential protective effects of taurine against sulfasalazine-induced kidney and liver injury in rats.
Methods: Male Sprague-Dawley rats were administered with sulfasalazine (600 mg/kg, oral) for 14 consecutive days. Animals received different doses of taurine (250, 500 and 1000 mg/ kg, i.p.) every day. Markers of organ injury were evaluated on day 15th, 24 h after the last dose of sulfasalazine.
Results: Sulfasalazine caused renal and hepatic injury as judged by an increase in serum level of creatinine (Cr), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP). The levels of reactive oxygen species (ROS) and lipid peroxidation were raised in kidney and liver of sulfasalazine-treated animals. Moreover, tissue glutathione reservoirs were depleted after sulfasalazine administration. Histopathological changes of kidney and liver also endorsed organ injury. Taurine administration (250, 500 and 1000 mg/kg/day, i.p) alleviated sulfasalazine-induced renal and hepatic damage.
Conclusion: Taurine administration could serve as a potential protective agent with therapeutic capabilities against sulfasalazine adverse effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.