Compared to wheeled vehicles, legged systems have a vast potential to traverse challenging terrain. To exploit the full potential, it is crucial to tightly integrate terrain perception for foothold planning. We present a hierarchical locomotion planner together with a foothold optimizer that finds locally optimal footholds within an elevation map. The map is generated in real-time from on-board depth sensors. We further propose a terrain-aware contact schedule to deal with actuator velocity limits. We validate the combined locomotion pipeline on our quadrupedal robot ANYmal with a variety of simulated and real-world experiments. We show that our method can cope with stairs and obstacles of heights up to 33 % of the robot's leg length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.