We show dynamic locomotion strategies for wheeled quadrupedal robots, which combine the advantages of both walking and driving. The developed optimization framework tightly integrates the additional degrees of freedom introduced by the wheels. Our approach relies on a zero-moment point based motion optimization which continuously updates reference trajectories. The reference motions are tracked by a hierarchical wholebody controller which computes optimal generalized accelerations and contact forces by solving a sequence of prioritized tasks including the nonholonomic rolling constraints. Our approach has been tested on ANYmal, a quadrupedal robot that is fully torque-controlled including the non-steerable wheels attached to its legs. We conducted experiments on flat and inclined terrains as well as over steps, whereby we show that integrating the wheels into the motion control and planning framework results in intuitive motion trajectories, which enable more robust and dynamic locomotion compared to other wheeled-legged robots. Moreover, with a speed of 4 m/s and a reduction of the cost of transport by 83 % we prove the superiority of wheeled-legged robots compared to their legged counterparts.
Compared to wheeled vehicles, legged systems have a vast potential to traverse challenging terrain. To exploit the full potential, it is crucial to tightly integrate terrain perception for foothold planning. We present a hierarchical locomotion planner together with a foothold optimizer that finds locally optimal footholds within an elevation map. The map is generated in real-time from on-board depth sensors. We further propose a terrain-aware contact schedule to deal with actuator velocity limits. We validate the combined locomotion pipeline on our quadrupedal robot ANYmal with a variety of simulated and real-world experiments. We show that our method can cope with stairs and obstacles of heights up to 33 % of the robot's leg length.
We present a motion planning and control framework for ALMA, a torque-controlled quadrupedal robot equipped with a six degrees of freedom robotic arm capable of performing dynamic locomotion while executing manipulation tasks. The online motion planning framework, together with a whole-body controller based on a hierarchical optimization algorithm, enable the system to walk, trot and pace while executing tasks such as fixed-position end-effector control, reactive human-robot collaboration and torso posture optimization to increase the arm's kinematic reachability. The torque controllability of the whole system enables the implementation of compliant behavior, allowing a user to safely interact with the robot in a very natural way. We verify our framework on the real robot by performing tasks such as opening a door and carrying a payload together with a human.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.