Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
This paper introduces ANYmal, a quadrupedal robot that features outstanding mobility and dynamic motion capability. Thanks to novel, compliant joint modules with integrated electronics, the 30 kg, 0.5 m tall robotic dog is torque controllable and very robust against impulsive loads during running or jumping. The presented machine was designed with a focus on outdoor suitability, simple maintenance, and user-friendly handling to enable future operation in real world scenarios. Performance tests with the joint actuators indicated a torque control bandwidth of more than 70 Hz, high disturbance rejection capability, as well as impact robustness when moving with maximal velocity. It is demonstrated in a series of experiments that ANYmal can execute walking gaits, dynamically trot at moderate speed, and is able to perform special maneuvers to stand up or crawl very steep stairs. Detailed measurements unveil that even full-speed running requires less than 280 W, resulting in an autonomy of more than 2 h.
We present a single Trajectory Optimization formulation for legged locomotion that automatically determines the gait-sequence, step-timings, footholds, swing-leg motions and 6D body motion over non-flat terrain, without any additional modules. Our phase-based parameterization of feet motion and forces allows to optimize over the discrete gait sequence using only continuous decision variables. The system is represented using a simplified Centroidal dynamics model that is influenced by the feet's location and forces. We explicitly enforce friction cone constraints, depending on the shape of the terrain. The NLP solver generates highly dynamic motion-plans with full flight-phases for a variety of legged systems with arbitrary morphologies in an efficient manner. We validate the feasibility of the generated plans in simulation and on the real quadruped robot ANYmal. Additionally, the entire solver software TOWR used to generate these motions is made freely available.
This paper provides a system overview about ANYmal, a quadrupedal robot developed for operation in harsh environments. The 30 kg, 0.5 m tall robotic dog was built in a modular way for simple maintenance and user-friendly handling, while focusing on high mobility and dynamic motion capability. The system is tightly sealed to reach IP67 standard and protected to survive falls. Rotating lidar sensors in the front and back are used for localization and terrain mapping and compact force sensors in the feet provide accurate measurements about the contact situations. The variable payload, such as a modular pan-tilt head with a variety of inspection sensors, can be exchanged depending on the application. Thanks to novel, compliant joint modules with integrated electronics, ANYmal is precisely torque controllable and very robust against impulsive loads during running or jumping. In a series experiments we demonstrate that ANYmal can execute various climbing maneuvers, walking gaits, as well as a dynamic trot and jump. As special feature, the joints can be fully rotated to switch between X-and O-type kinematic configurations. Detailed measurements unveil a low energy consumption of 280 W during locomotion, which results in an autonomy of more than 2 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.