Composites proton conducting material based on cesium dihydrogen phosphate (CDP) doped with zirconium oxide (1−x) CsH2PO4/x ZrO2 were synthesized with different concentration having in the range such as x = 0.1, 0.2, 0.3 and 0.4 by ball milling method. The prepared solid acid composites were dried at 150 °C for 6 h. Structural and thermal characterization of solid acid composite proton electrolytes were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, and Raman spectroscopy respectively. Phase transition of the prepared materials was carried out by using differential scanning calorimetry and conductivity was measured by LC Impedance meter in the range 1 Hz to 400 kHz. The ionic conductivity of ZrO2 doped CsH2PO4 (CDP) was increased up to 1.3 × 10–2 S cm−1 at the 280 °C under environment atmospheric humidification which showed high stability as compared to pure CsH2PO4 (CDP). This obtaining result would be useful for establishing and design the next generation fuel cell.
Composite Electrolytes (1-x)CsH2PO4/xTiO2(0 ≤ x ≤ 0.4) were prepared and analyzed the structural, thermal, and transport properties. We have investigated the ionic conductivity of the composites electrolyte highly pressurized pellets and found that the conductivity of pure CsH2PO4 (CDP) increased three orders of magnitude at the transition temperature. The conductivity value of the composites is greater than pure CDP after 250°C. Arrhenius plots have confirmed the conductive nature of ionic conduction. The dehydration behavior and thermal stability of the materials were observed in terms of differential scanning calorimetry, thermogravimetric analysis and differential thermal analysis, and found that the minimum weight loss for the composite 0.6CDP/0.4TiO2. The electrodes were prepared with the technique of vapor deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.