Resonant metasurfaces are an attractive platform for enhancing the non-linear optical processes, such as second harmonic generation (SHG), since they can generate very large local electromagnetic fields while relaxing the phase-matching requirements. Here, we take this platform a step closer to the practical applications by demonstrating visible range, continuous wave (CW) SHG. We do so by combining the attractive material properties of gallium phosphide with engineered, high quality-factor photonic modes enabled by bound states in the continuum. For the optimum case, we obtain efficiencies around 5e-5 % W −1 when the system is pumped at 1200 nm wavelength
We study the effect of transfer of phase noise in different four wave mixing schemes using a coherent phase noise measurement technique. The nature of phase noise transfer from the pump to the generated wavelengths is shown to be independent of the type of phase noise (1 / f or white noise frequency components). We then propose a novel scheme using dual correlated pumps to prevent the increase in phase noise in the conjugate wavelengths. The proposed scheme is experimentally verified by the all-optical wavelength conversion of a DQPSK signal at 10.7 GBaud.
We designed, fabricated and tested gallium phosphide (GaP) nano-waveguides for second harmonic generation (SHG). We demonstrate SHG in the visible range around 655 nm using modal phase matching. We observe phase matched SHG for different combinations of interacting modes by varying the widths of the waveguides and tuning the wavelength of the pump. We achieved a normalized internal SHG conversion efficiency of 0.4% W−1cm−2 for a continuous-wave pump at wavelength of 1283.5 nm, the highest reported in the literature for a GaP waveguide. We also demonstrated temperature tuning of the SHG wavelength with a slope of 0.17 nm/°C. The presented results contribute to the development of integrated photonic platforms with efficient nonlinear wave-mixing processes for classical and quantum applications.
Hybrid dielectric metasurfaces have emerged as a promising approach to enhancing near field confinement and thus high optical nonlinearity by utilizing low loss dielectric rather than relatively high loss metallic resonators. A wider range of applications can be realized if more design dimensions can be provided from material and fabrication perspectives to allow dynamic control of light. Here, tunable third harmonic generation (THG) via hybrid metasurfaces with phase change material Ge 2 Sb 2 Te 5 (GST) deposited on top of amorphous silicon metasurfaces is demonstrated. Fano resonance is excited to confine the incident light inside the hybrid metasurfaces, and an experimental quality factor (Q-factor ≈ 125) is achieved at the fundamental pump wavelength around 1210 nm. Not only the switching between a turn-on state of Fano resonance in the amorphous state of GST and a turn-off state in its crystalline state are demonstrated, but also gradual multistate tuning of THG emission at its intermediate states. A high THG conversion efficiency of η = 2.9 × 10 −6 % is achieved, which is 32 times more than that of a GST-based Fabry-Pèrot cavity under a similar pump laser power. Experimental results show the potential of exploring GST-based hybrid dielectric metasurfaces for tunable nonlinear optical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.